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Abstract: In this paper, finite impulse response (FIR) smoothers are proposed for discrete-time systems. The proposed

FIR smoother is designed under the constraints of linearity, unbiasedness, FIR structure, and independence of the initial state

information. It is also obtained by directly minimizing the performance criterion with unbiased constraints. The approach to

the MVF smoother proposed in this paper is logical and systematic, while existing results have heuristic assumption, such as

infinite covariance of the initial state. Additionally, the proposed MVF smoother is based on the general system model that may

have the singular system matrix and has both system and measurement noises. Thorough simulation studies, it is shown that

the proposed MVF smoother is more robust against modeling uncertainties numerical errors than fixed-lag Kalman smoother

which is infinite impulse response (IIR) type estimator.
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1. Introduction
In recent years, FIR(finite impulse response) type estima-

tor designs that meet desired specifications in the frequency

or spatial domain have been widely investigated and are now

well established in signal processing areas [1], [2], [3], [4],

[5], [6], [7], [8]. The FIR type estimators have several de-

sign and implementation advantages against the IIR type

estimators. The FIR structure makes use of finite measure-

ments and inputs on the most recent time interval called the

receding horizon or horizon, while the IIR(infinite impulse

response) structure utilizes all information up to estimation

time. Even though FIR type estimators have many advan-

tages over IIR type estimators in the signal processing area,

IIR type estimators have been researched and used more

widely for model-based signals that can be represented as a

predictable signal from certain models and formalize a prior

knowledge. Actually, the Kalman filter with an IIR struc-

ture has been the standard choice for the state estimation

in state space model, and thus has been an important tool

for signal processing. However, as applications became more

numerous, some pitfalls of the Kalman filter were discovered

such as the problem of divergence due to the lack of relia-

bility of the numerical algorithm or to inaccurate modeling

of the system under considerations. Therefore, to overcome

these demerit, the FIR type estimators have been used as an

alternative to the IIR type estimator for the state estimation

in state space model.

For discrete-time systems, the FIR smoother without a priori

initial state information can be represented as

x̂k−h =

k−1∑

i=k−N

Hk−iyi +

k−1∑

i=k−N

Lk−iui. (1)

The IIR structure has a similar form to (1) with k − N re-

placed by the initial time k0. In IIR and FIR types, the

initial state means xk0 and xk−N , respectively. A strong un-

biased condition for the FIR smoother (1) can be represented

as

E[x̂k−h] = E[xk−h] for any xk−N . (2)

The constraint (1) will prevent to obtain a reasonable solu-

tion. However, among linear unbiased FIR estimators sat-

isfying the conditions (1) and (2), some kind of optimal es-

timators will be obtained depending on some performance

criterion.

The recursive forms of FIR smoothers for state-space mod-

els are derived in [9], [10]. The optimal FIR smoother [11]

was developed from a Fredhelm integral equation with some

complex boundary indices. The horizon initial state was

given by the state propagator and the discrete Lyapunov

equation or was assumed to be unknown. However, gen-

eral readers might find it hard to understand the derivation

of complicated estimation algorithm. To reduce the com-

putational burden of the optimal FIR smoother in [9], [10],

[11], the fast algorithm for optimal FIR smoother for gen-

eral state-space model was developed in [12]. The horizon

initial state was given by the state propagator and the dis-

crete Lyapunov equation. The problem associated with this

approach is that its performance depends heavily on the ac-

curacy of the state propagator, which is seriously influenced

by uncertainty in the system initial state. Furthermore, al-

though above stochastic FIR smoothers [9], [10], [11], [12]

were developed for general state space models with system

and measurement noises, it is not clear to understand the op-

timality and has some heuristic assumptions such as infinite

covariance of the initial state.

To the authors knowledge, there seems to be no result on

unbiased linear FIR smoothers with a priori built-in unbi-

asedness regardless of the initial state information as well as

a clear optimality for general state space models with both
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system and measurement noises. Therefore, a new unbiased

FIR smoother will be proposed in this paper. The proposed

unbiased FIR smoother is to be represented in a batch form

and then in a recursive form. The proposed unbiased FIR

smoother in this approach is logical and systematic, while the

previous approaches have some heuristic assumptions such as

infinite covariance of the initial state. Additionally, it does

not require the system matrix inversion, i.e., Hk−i and Lk−i

of (1) will be represented without using the system matrices

inversion while the FIR smoothers in previous approaches

have assumed that the system matrix is nonsingular since it

requires the system matrix inversion.

This paper is organized as follows. In Section 2, the MVF

smoothers for general discrete-time system is proposed in a

standard FIR form. The performance of the proposed MVF

smoother will be compared with fixed-lag Kalman smoother

in section 3. Finally, conclusions are presented in Section 4.

2. MVF Smoother for Discrete-Time System

Consider a linear discrete-time state space model:

xk+1 = Axk + Buk + Gwk, (3)

yk = Cxk + vk, (4)

where xk ∈ <n is the state, uk ∈ <l and yk ∈ <q are

the input and measurement, respectively. At the initial time

k0 of the system, the state xk0 is a random variable with a

mean x̄k0 and a covariance Pk0 . The system noise wk ∈ <p

and the measurement noise vk ∈ <q are zero-mean white

Gaussian and mutually uncorrelated. Q and R denote the

covariances of wk and vk which are assumed to be positive

definite matrices. These noises are uncorrelated with the

initial state xk0 . (A, C) of the system (3)-(4) is assumed to

be observable so that all modes are observed at the output

and the stabilized observer can be constructed. In order

to obtain FIR smoothers, it is necessary to relate the most

recent information such as measurements and inputs to the

estimate state. The system (3)-(4) will be represented in a

batch form on the most recent time interval [k−N k] called

the horizon. The finite number of measurements and inputs

will be expressed in terms of the state xk−N at the initial

time k −N on the horizon [k −N, k] as follows:

Yk−1 = C̃Nxk−N + B̃NUk−1 + G̃NWk−1 + Vk−1, (5)

where

Yk−1
4
= [yT

k−N yT
k−N+1 · · · yT

k−1]
T , (6)

Uk−1
4
= [uT

k−N uT
k−N+1 · · · uT

k−1]
T , (7)

Wk−1
4
= [wT

k−N wT
k−N+1 · · · wT

k−1]
T ,

Vk−1
4
= [vT

k−N vT
k−N+1 · · · vT

k−1]
T ,

and C̃N , B̃N , and G̃N are obtained from

C̃i
4
=




C

CA

CA2

...

CAi−1




, (8)

B̃i
4
=




0 0 · · · 0 0

CB 0 · · · 0 0

CAB CB · · · 0 0
...

...
...

...
...

CAi−2B CAi−3B · · · CB 0




, (9)

G̃i
4
=




0 0 · · · 0 0

CG 0 · · · 0 0

CAG CG · · · 0 0
...

...
...

...
...

CAi−2G CAi−3G · · · CG 0




, (10)

for 2 ≤ i ≤ N . In case of i = 1, C̃1 is set to C and B̃1 and G̃1

are defined as zero matrices. The noise term can be shown

to be ΠN given by

ΠN = G̃NQN G̃T
N + RN , (11)

where

QN =
[
diag(

N︷ ︸︸ ︷
Q Q · · · Q)

]

and

RN =
[
diag(

N︷ ︸︸ ︷
R R · · · R)

]
. (12)

An FIR smoother with a batch form for the state xk−h can

be expressed as a linear function of the finite measurements

Yk−1 (6) and inputs Uk−1 (7) on the horizon [k − N, k] as

follows:

x̂k−h|k−1 = HYk−1 + LUk−1 (13)

where

H
4
=

[
HN HN−1 · · · H1

]
,

L
4
=

[
LN LN−1 · · · L1

]
,

and matrices H and L will be chosen to minimize a given

performance criterion later.

Augmenting (3) and (5) yields the following linear model:

[
Yk−1

0

]
=

[
C̃N 0

AN−h −I

] [
xk−N

xk−h

]

+

[
B̃N

AN−h−1B · · · B 0 · · · 0

]
Uk−1

+

[
G̃N

AN−h−1G · · · G 0 · · · 0

]
Wk−1

+

[
Vk−1

0

]
. (14)
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By using the equation (14), the MVF smoother (13) can be

rewritten as

x̂k−h =
[

H −I
] [

Yk−1

0

]
+ LUk−1,

=
[

H −I
] [

C̃N 0

AN −I

] [
xk−N

xk−h

]

+
[

H −I
] [

B̃N

AN−h−1B · · · B 0 · · · 0

]
Uk−1

+
[

H −I
] [

G̃N

AN−h−1G · · · G 0 · · · 0

]
Wk−1

+
[

H −I
] [

Vk−1

0

]
+ LUk−1, (15)

and taking the expectation on both sides of (15) yields the

following equation:

E[x̂k−h] = (HC̃N −AN−h)E[xk−N] + E[xk−h]

+
[

H −I
] [

B̃N

AN−h−1B · · · B 0 · · · 0

]
Uk−1

+LUk−1.

To satisfy the unbiased condition, i.e., E[x̂k−h] = E[xk−h],

without respect to the initial state and the input, the follow-

ing constraints are required:

HC̃N = AN−h, (16)

L = −
[

H −I
]

×
[

B̃N

AN−h−1B · · · B 0 · · · 0

]
.(17)

Substituting (16) and (17) into (15) yields the simplified

equation as

x̂k−h = xk−h + HG̃NWk−1

−
[

AN−h−1G · · · G 0 · · · 0
]
Wk−1

+HVk−1, (18)

ek−h
4
= x̂k−h − xk−h

= HG̃NWk−1

−
[

AN−h−1G · · · G 0 · · · 0
]
Wk−1

+HVk−1. (19)

Since the matrix gain L can be obtained from H by (17), the

object now is to find the optimal gain matrix HB , subject

to the unbiasedness constraints (16) and (17), in such a way

that the estimation error of the estimate ˆxk−h as follows :

HB = arg min
H

E[eT
k−hek−h] (20)

For convenience, the matrix gain H can be partitioned as

HT =
[

h1 h2 · · · hn

]
, (21)

and i-th rows of
[

AN−h−1G · · · G 0 · · · 0
]

and

AN−h are denoted by βT
i and αT

i , respectively. Since the

unbiasedness constraint is HC̃N = AN−h, the ith unbiased-

ness constraint can be rewritten as

C̃T
Nhi = αi. (22)

for 1 ≤ i ≤ n. Calculating e2
k−h,i form ek−h,i

4
= x̂k−h,i −

xk−h,i and taking the expectation of it, we then obtain

E[e2
k−h,i] = (hT

i G̃N − βT
i )QN (hT

i G̃N − βT
i )T

+ hT
i RNhi. (23)

Observe that the error variance for the ith state depends

only on the ith row of the smoother gain matrix H. We,

therefore, establish the following performance criterion:

E[e2
k−h,i] = (hT

i G̃N − βT
i )QN (hT

i G̃N − βT
i )T

+ hT
i RNhi + λT

i (C̃T
Nhi − αi), (24)

= hT
i (G̃NQN G̃T

N + RN )hi − βT
i QN G̃T

Nhi

− hT
i G̃NQNβi + βT

i QNβi

+ λT
i (C̃T

Nhi − αi), (25)

where λi is the ith vector of a Lagrange multiplier, which is

associated with the ith unbiased constraint. Under the con-

straint (22), the smoother gain hi will be chosen to minimize

(25) with respect to hi and λi (i = 1, 2, · · · , n). In order to

minimize E[e2
k−h,i], two necessary conditions

∂E[e2
k−h,i]

∂hi
= 0 and

∂E[e2
k−h,i]

∂λi
= 0

are necessary, which give

hi = (G̃NQN G̃T
N + RN )−1(G̃NQNβi − 1

2
C̃Nλi)

= Π−1
N (G̃NQNβi − 1

2
C̃Nλi), (26)

where the inverse of ΠN is guaranteed since ΠN =

G̃NQN G̃T
N + RN is positive definite.

Pre-multiplying (26) by C̃T
N , we have

C̃T
Nhi = C̃T

NΠ−1
N (G̃NQNβi − 1

2
C̃Nλi) = αi, (27)

where a second equality comes from (22).

From (27), hi can be obtained as

hT
i = [αT

i − βT
i QN G̃T

NΠ−1
N C̃N ]

(C̃T
NΠ−1

N C̃N )−1C̃T
NΠ−1

N + βT
i QN G̃T

NΠ−1
N .

By reconstructing hi, we can obtain the gain matrix H as

H =
[

AN−h AN−h−1G · · · G 0 · · · 0
]

×
[

W1,1 W1,2

W T
1,2 W2,2

]−1 [
C̃T

N

G̃T
N

]
R−1

N . (28)

where

W1,1
4
= C̃T

NR−1
N C̃N , (29)

W1,2
4
= C̃T

NR−1
N G̃N , (30)

W2,2
4
= G̃T

NR−1
N G̃N + Q−1

N (31)
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By the constraint (17), we can obtain the smoother gain L

from (28). The MVF smoother can be written as

x̂k−h =
[

AN−h AN−h−1G · · · G 0 · · · 0
]

×
[

W1,1 W1,2

W T
1,2 W2,2

]−1 [
C̃T

N

G̃T
N

]
R−1

N

(
Yk−1 − B̃NUk−1

)

+
[

AN−h−1B · · · B 0 · · · 0
]
Uk−1.

(32)

As can be seen in (32) , the inverse of the system matrix A

does not appear in the smoother coefficients.

3. Numerical Example
To demonstrate the proposed MVF smoother, numerical ex-

amples on the discretized model of an F-404 engine [13] are

simulated. The corresponding dynamic model is written as

xk+1 =




0.9305 + δk 0 0.1107

0.0077 0.9802 + δk −0.0173

0.0142 0 0.8953 + 0.1δk


 xk

+




1

1

1


 wk, (33)

y(t) =

[
1 + 0.1δk 0 0

0 1 + 0.1δk 0

]
xk + vk, (34)

where δk is an uncertain model parameter. The system noise

covariance Qk is 0.02 and the measurement noise covariance

Rk is 0.02. The horizon length is taken as N = 10 and the

delay factor is set as h = 3. We perform simulation studies

for the system (33) with temporary modeling uncertainty.

As mentioned previously, the MVF smoother is believed to

be robust against temporary modeling uncertainties since it

utilizes only finite measurements on the most recent hori-

zon. To illustrate this fact and the fast convergence, the

MVF smoother and the fixed-lag Kalman smoother are de-

signed with δk = 0 and compared when a system has actually

temporary modeling uncertainty. The uncertain model pa-

rameter δk is considered as

δk =

{
0.1, 50 ≤ k ≤ 100,

0, otherwise.
(35)

Figure (1) compares the robustness between the proposed

MVF smoother and fixed-lag Kalman smoother which given

temporary modeling uncertainty (35) for the second state

which is related to turbine temperature. It is seen that the

estimation error of the MVF smoother is remarkably smaller

than that of the fixed-lag Kalman smoother on the inter-

val where modeling uncertainty exists. In addition, it is

shown that the estimation error is converged much faster

than that of the fixed-lag Kalman smoother after temporary

modeling uncertainty disappears. Therefore, the proposed

MVF smoother is very useful than IIR type estimators when

there exist temporary modelling errors and numerical errors.

In Figure(2), the estimates of MVF smoother and filter are
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Fig. 1. Estimation errors of MVF smoother and Fixed-lag

Kalman smoother
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Fig. 2. Estimates of MVF smoother and MVF filter ( h = 0

)

compared when the delay factor in MVF smoother is equal

to zero. This means that the future data values are not used

to estimate the state. Therefore, MVF filter is the special

forms of MVF smoother when no future data values are used

to estimate the state.

4. Conclusion
In this paper, the finite impulse response (FIR) smoother is

proposed for discrete-time systems. The proposed smoother

is chosen to optimize the minimum variance performance

criterion with unbiased constraint. They are designed with

linearity, unbiasedness, FIR structure, and independence of

the initial state information.

The approaches of MVF smoother are logical and system-

atic, while the existing result has heuristic assumption, such

as infinite covariance of the initial state. Since there are few

result and theoretical approaches on FIR smoother for model
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based signal, this approaches have a great significance. Ad-

ditionally, it is meaningful that the proposed MVF smoother

is based on the general system that may have the singular

system matrix and has both system and measurement noises.

Thorough simulation studies, it is shown that the MVF fil-

ter is the special forms of MVF smoother when no future

data values are used to estimate the signal. It means that

the proposed MVF smoother is generalized form of MVF fil-

ter. The result of comparison between the proposed MVF

smoother and fixed-lag Kalman smoother is also provided

by simulation. It shows that the proposed MVF smoother

is very useful for control problems than IIR type estimators

when there are temporary modelling errors and numerical

errors.
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