• Title/Summary/Keyword: Ultrasonic images

Search Result 250, Processing Time 0.02 seconds

A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer (초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구)

  • Yoo, Sang-Hyun;Choi, Won-Jae;Lee, Seung-Won
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.

Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame (프로판/공기 예혼합화염의 전파거동 및 구조안정화에 대한 정상초음파의 간섭효과)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • An experimental study has been conducted to scrutinize into the influence of ultrasonic standing wave on the propagating behavior and structural stabilization of propane/air premixed flame at various equivalence ratios in half-open rectangular duct. Evolutionary features of the flame fronts are caught by high-speed images, and the variation of flame structure and local flame velocities along the propagation are analyzed. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without the agitation: the velocity enhancement diminishes as the equivalence ratio approaches the stoichiometric. Influence of standing wave on the flame overwhelms that of the buoyancy which slants the flame front towards top of the duct, and thus the standing wave contributes to the structural stabilization of propane/air premixed flame.

Comparison of Dynamic Characteristics of Methane/Air and Propane/Air Premixed Flames with Ultrasonic Standing Wave (정상초음파가 개재하는 메탄/공기 및 프로판/공기 예혼합화염의 동역학적 특성 비교)

  • Kim, Min Cheol;Bae, Dae Seok;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.44-51
    • /
    • 2017
  • An experimental results on the dynamic characteristics of hydrocarbon/air premixed flames with ultrasonic standing waves are presented and compared. Images of the propagating flames were acquired by using a high-speed camera, and the flame behavior of methane/air and propane/air premixed flame were closely scrutinized through the image post-processing. At the fuel-lean conditions, the flame propagation velocity increased due to the intervention of the ultrasonic standing wave and vice versa at the fuel-rich conditions.

Study for Non-Destructive Testing of Polyethylene Electrofusion Joints - Ultrasonic Imaging test (폴리에틸렌 배관의 전기융착부 비파괴검사기술에 관한 연구)

  • Kil Seong Hee;Kwon Jeong Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.31-36
    • /
    • 2004
  • Electrofusion(EF) joints have been widely used as they are easy to fuse and suitable for high-quality joints for polyethylene(PE) pipes. This paper studies the cause of defects and classifies 5 types of defects. The defect detection technique for electrofusion joints of polyethylene piping is utilized by the ultrasonic phased array technique to obtain ultrasonic images of electrofusion joints. Test sample joints have been designed and fabricated using artificial defects which were made using paper. Finally, we studied the condition of electrofusion in the field and analyzed the main causes of defects. And we classified the defect types as local lack of fusion, sand inclusion, voids or air inclusion, short stab, excess penetration or excess bead.

  • PDF

Analysis of Contact Resonance Frequency Characteristics for Cantilever of Ultrasonic-AFM Using Finite Element Method (유한요소 해석을 이용한 초음파원자현미경 캔틸레버의 접촉 공진주파수 특성 분석)

  • Lee, Joo Min;Han, You Ha;Kwak, Dong Ryul;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.478-484
    • /
    • 2014
  • Ultrasonic atomic force microscopy(Ultrasonic-AFM) can be used to obtain images of the elastic properties of a subsurface and to evaluate the elastic properties by measuring the contact resonance frequency. When a tip is in contact with the sample, it is necessary to understand the cantilever behavior and the tip-sample interaction for the quantitative and reliable analysis. Therefore, precise analysis models that can accurately simulate the tip-sample contact are required; these can serve as good references for predicting the contact resonance frequency. In this study, modal analyses of the first four modes were performed to calculate the contact resonance frequency by using a spring model, and the deformed shapes of the cantilever were visualized at each mode. We presented the contact characteristics of the cantilever with a variety of contact conditions by applying the contact area, contact material thickness, and material properties as the parameters for the FEM analysis.

Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography (유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석)

  • Cho, Jin-Young;Ye, Soo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2019
  • Breast ultrasound readings are very important to diagnose early breast cancer. In Ultrasonic inspection, it shows a significant difference in image quality depending on the ultrasonic equipment, and there is a large difference in diagnosis depending on the experience and skill of the inspector. Therefore, objective criteria are needed for accurate diagnosis and treatment. In this study, we analyzed texture characteristics by applying GLCM (Gray Level Co-occurrence Matrix) algorithm and extracted characteristic parameters and diagnosed breast cancer using neural network classifier. Breast ultrasound images were classified into normal, benign and malignant tumors and six texture parameters were extracted. Fourteen cases of normal, malignant and benign tumor diagnosed by mammography were studied by using the extracted six parameters and learning by multi - layer perceptron neural network back propagation learning method. As a result of classification using 51 normal images, 62 benign tumor images, and 74 malignant tumor images of the learned model, the classification rate was 95.2%.

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave (정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이)

  • Lee, Sang Shin;Seo, Hang Seok;Kim, Jeong Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.173-181
    • /
    • 2014
  • The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

Development of Ultrasonic Testing System for Piping Welds (배관 용접부 초음파검사 시스템 개발)

  • Choi, Sung-Nam;Kim, Hyung-Nam;Yoo, Hyun-Ju;Cho, Hyun-Jun;Hwang, Won-Gul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2008
  • Ultrasonic testing for welds is widely used to ensure the integrity of facilities in NPPs. Automated ultrasonic testing(AUT) is more consistent than the manual ultrasonic testing(MUT). It can scan welded parts, examines the scanned images, and saves the results as data files. AUT in NPPs is making use of commercial systems, and there has been some difficulties in calibration of the system. An AUT system is developed. It comprises of pulser/receiver, scanner and a control program(SonicWizard). The performance demonstration for piping welds in NPPs and the piping wall thickness measurement on site were conducted to verify this system. The test results of the ultrasonic testing system developed is satisfactory and effective.

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

Influence to the Doppler Images by the Defects of Piezoelectric Elements of the Probe of Medical Ultrasonic Scanners (Focusing on the Impact of an Increase in the Defects of Piezoelectric Elements) (초음파 프로브 소자 결함이 도플러 영상에 미치는 영향 (소자 결함 증가에 따른 영향을 중심으로))

  • Lee, Kyung-Sung
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.117-124
    • /
    • 2014
  • This study has investigated the effects of the defects in the probe elements influence Doppler images in the medical ultrasonic scanners. This work was implemented that the quality of Doppler images depended on the extent and location of the probe element defected. The probe performance was rated in terms of the number of piezoelectric elements lost and this was studied in the experiment by electrical disconnection to the elements. The results showed that Doppler velocity became rapidly reduced as the defected elements encountered with the element group activated at the Doppler mode, not as the flow velocity. The effect of the probe defect is decreased when the defects occurred at the element group activated for Doppler mode, as was increased the number of the elements. It was observed that the higher the flow velocity of Doppler flow phantom is, the wider the spectrum of Doppler is. And the Doppler velocity soared up and the dispersion of image brightness is increased when the defected elements got out of the elements activated at Doppler mode. The result showed that TADVP(time-average-Doppler-velocity-profile) is decreased with the increase of the probe element defect, especilly in the region of high frequency. It is expected that the research of various defects of probe elements are needed, and this study can be practical tools for probe based ultrasonic QA in the future.