• Title/Summary/Keyword: Ultrasonic images

Search Result 248, Processing Time 0.028 seconds

Correlation Analysis between Crack Depth of Concrete and Characteristics of Images (콘크리트 균열 깊이와 이미지 특성정보간의 상관성 분석)

  • Jung, Seo-Young;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.162-163
    • /
    • 2021
  • Currently, the depth of cracks is measured using ultrasonic detectors in maintenance practice. This method consists of measuring the depth of cracks by attaching ultrasonic depth measuring equipment to the concrete surface, and there are restrictions on the timing and location of the inspection. These limitations can be addressed through the development of image-based crack depth measurement AI technology. If crack depth measurements are made based on images, restrictions on the timing and location of inspections can be lifted because images acquired with simple filming equipment can be used as input information. To efficiently develop these artificial intelligence technologies, it is essential to identify the interrelationship between crack depth measurements and image characteristic information. Thus, this study is a basic study of the development of image-based crack depth measurement AI technology and aims to identify image characteristic information related to crack depth.

  • PDF

Cross-Sectional Image Reconstruction of Wooden Member by Considering Variation of Wave Velocities

  • Kim, Kwang-Mo;Lee, Sang-Joon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.16-23
    • /
    • 2007
  • This study was performed as part of a research project aimed at developing an ultrasonic computed tomography (CT) system of wood for field application. In this reports, we investigate the variation of wave velocities on the cross section of real size wooden structural member to confirm the reason of image distortion on CT image of wood, and then proposed a new image reconstruction method by considering the velocity variation on wood cross section. First of all, the effect of wood anisotropy on ultrasonic velocities of wooden members was investigated. Based on the relationship between ultrasonic velocity and annual ring angle, which was obtained from test results of small clear specimens, ultrasonic velocities of each measuring angle were predicted. Next, they were compared with the ultrasonic velocities measured on five wood disks. There were very large differences between predicted and measured results, thought to be caused by the skewing effect of ultrasound and the presence of juvenile-wood. Based on these findings, a new method was proposed to reconstruct cross-sectional image of wood. By using this method, some distortions on reconstructed images could be removed, and defects were more easily and clearly detected. The minimum size of detectable defect was decreased remarkably, from 33 mm to 13 mm. However, the size of the detected defect was enlarged and the position somewhat shifted to the specimen surface on the CT images, which was also thought to be caused by the skewing effect of ultrasound. Additional research has been planned to solve these problems.

Noise Reduction and C-Scan Image Shaping of Ultrasonic Signal for Welding Quality Inspection (용접 품질 검사를 위한 초음파 신호의 노이즈 제거 및 C-Scan 영상 형상화)

  • Kim, Tae-Kyu;SEO, JONGDOCK;Lee, Dong-Hyung;Kang, Eon-uck;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.10
    • /
    • pp.1662-1670
    • /
    • 2017
  • A-Scan NDT equipment is widely used in the industrial field because it is inexpensive and easy to carry but it is necessary to have a skilled inspection specialist who is trained to analyze the waveform of ultrasonic signal. Since the welding quality is judged subjectively by the specialist, there is a problem in the reliability of the quality. In the C-Scan NDT which overcomes the shortcomings of the A-Scan, welding part can be represented in the form of two dimensional image by combining one dimensional ultrasonic waveform so that the quality of welding can be grasped without the help of specialist. In order to develop C-Scan NDT, it is necessary to develop an array type two dimensional transducer and an algorithm to composing image by combining ultrasonic signals generated from a two dimensional transducer. In addition, the noise component must be minimized in the ultrasonic signal in order to display the quality of welding in the form of images. Therefore we propose a method to remove noise component from the ultrasonic wave and construct a two dimensional ultrasonic image.

Evaluation of Mechanical Properties of Structural Ceramics ($Al_{2}O_{3}$) Using the High Frequency Ultrasonic C - Scan (초음파 C-Scan을 이용한 구조용 세라믹스의 기계적 특성평가)

  • Chang, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.18-24
    • /
    • 1989
  • Computer-aided high frequency ultrasonic is applied to aluminum oxide(85w%, 94w%, 96w%, and 99w%) MOR(modulus of rupture) samples to evaluate mechanical properties such as density variation, pore content, elastic modulus, shear modulus, and poisson's ratio. Ultrasonic wave velocity and attenuation measurement techniques were used as an evaluator of such properties. Pulse-echo C-Scan images with different fate setting method using 50MHz center frequency 1 inch focal length transducer allows evaluation of density variation and pore content. Elastic modulus calculated with the relation of density and ultrasonic velocity. It shows good reliability as compared with resonance method. Sintered density variation of $0.025g/cm^{3}$, that is 0.6% of theoretical density in $Al_{2}O_{3}$ samples can be observed by ultrasonic velocity measurement. Attenuation measurement method qualitatively agree with 4-point fracture testing result concerning of porosity content.

  • PDF

Enhancement of Ultrasonic C-scan Images for Inspection of Multi-layered Composite Panels (다층 후판 복합재 패널의 결함 검출을 위한 C-Scan 이미지 보정기법)

  • Cho Hyun;Song Sung-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.264-267
    • /
    • 2006
  • One of the serious problems that make the flaw identification in a multi-layered thick composite panel more difficult is the interferenceeffect of the upper layer. To take care of such a problem, here we propose an image enhancement approach that can get rid of such an interference effect to ultrasonic C-scan images by a normalization of the acquired signals by a reference signals, and demonstrate its performance in the experiments. Specifically, three specimens with artificial flaws are prepared and ultrasonic C-scan images are acquired experimentally to eliminate the undesired interference effect. Cleat successes are observed in the present study demonstrating the high potential of the proposed algorithm as a practical image enhancement tool in many practical situations.

  • PDF

Development of 3D Image Processing Software using EMD for Ultrasonic NDE (EMD를 이용한 초음파 비파괴 평가용 3차원 영상처리 소프트웨어 개발)

  • Nam, Myung-Woo;Lee, Young-Seock;Yang, Ok-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1569-1573
    • /
    • 2008
  • This paper describes a development of Ultrasonic NDE software to analyze steam generator of nuclear power plant. The developed software includes classical analysis method such as A, B, C and D-scan images. And it can analyze the detected internal cracks using 3D image processing method. To do such, we obtain raw data from specimens of real pipeline of power plants, and get the envelope signal using Empirical Mode Decomposition from obtained ultrasonic 1-dimensional data. The reconstructed 3D crack images offer useful information about the location, shape and size of cracks, even if there is no special 2D image analysis technique. The developed analysis software is applied to specimens containing various cracks with known dimensions. The results of application showed that the developed software provided accurate and enhanced 2D images and reconstructed 3D image of cracks.

A Study on the Generation of Ultrasonic Binary Image for Image Segmentation (Image segmentation을 위한 초음파 이진 영상 생성에 관한 연구)

  • Choe, Heung-Ho;Yuk, In-Su
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.571-575
    • /
    • 1998
  • One of the most significant features of diagnostic ultrasonic instruments is to provide real time information of the soft tissues movements. Echocardiogram has been widely used for diagnosis of heart diseases since it is able to show real time images of heart valves and walls. However, the currently used ultrasonic images are deteriorated due to presence of speckle noises and image dropout. Therefore, it is very important to develop a new technique which can enhance ultrasonic images. In this study, a technique which extracts enhanced binary images in echocardiograms was proposed. For this purpose, a digital moving image file was made from analog echocardiogram, then it was stored as 8-bit gray-level for each frame. For an efficient image processing, the region containing the heat septum and tricuspid valve was selected as the region of interest(ROI). Image enhancement filters and morphology filters were used to reduce speckle noises in the images. The proposed procedure in this paper resulted in binary images with enhanced contour compared to those form the conventional threshold technique and original image processing technique which can be further implemented for the quantitative analysis of the left ventricular wall motion in echocardiogram by easy detection of the heart wall contours.

  • PDF

Design and Implementation of Flaw Image processing System for Automated Ultrasonic Testing System (자동 초음파 검사를 위한 결함 영상 처리 시스템의 설계 및 구현)

  • Kim, Han-Jong;Park, Jong-Hoon;Kim, Chul-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.225-232
    • /
    • 2010
  • In this study, an automated ultrasonic testing system and post signal and image processing techniques are developed in order to construct ultrasonic flaw images in weldments. Image processing algorithms are built into the flaw image processing system for the automated ultrasonic testing system. The developed signal and image analysis algorithms addressed in this study include an A-Scan data compression algorithm, ultrasonic image amplification algorithm and B-scan flaw image correction algorithm(SAFT). This flaw image processing system for the automated ultrasonic testing system can be applied to various inspection fields.

Optimal Many-core Processor Architecture for Different Ultrasonic Image Resolutions (초음파 영상선호의 크기 변화에 따른 최적의 매니코어 프로세서 구조)

  • Kang, Seong-Mo;Kim, Jong-Myon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2012
  • This paper proposes an optima] many-core processor architecture that meets the requirements of low power and high performance for different ultrasonic image resolutions in hand-held ultrasonic devices. To identify the optimal many-core architecture, seven different PE configurations are simulated for processing ultrasonic images in terms of execution performance and energy consumption. Experimental results indicate that the highest energy efficiencies are achieved at PEs=1,024, 64, and 256 for ultrasonic images at $256{\times}256$, $320{\times}240$, and $800{\times}480$ resolutions, respectively. In addition, the maximum area efficiencies are obtained at PEs=256 (for $256{\times}256$ and $800{\times}480$ image resolutions) and 64 (for $320{\times}240$ image resolution).

Nondestructive testing for the evaluation of adhesive layer in rocket motor case assembly (연소관 조립체 접합계면의 평가를 위한 비파괴시험에 관한 연구)

  • 박준수;송성진;김영환;임수용;윤남균;조정표
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.90-93
    • /
    • 2001
  • In the present work, ultrasonic testing method has been developed to evaluate adhesive layers in rocket motor case assembly for the reliability of the rocket. The main objective of the present work was to find debonding between steel and rubber layers. The relationship between adhesion ratio and reflected ultrasonic amplitude was calculated by considering reflection coefficient at the interface between steel and rubber layers. It was found that the higher amplitude of ultrasound is reflected for the debonding area, and shown good agreements with experimental results. The ultrasonic C-scan images offers good implements for the determination of debonding area. The nondestructive testing results were compared with the micrography of destruective testing. As results, ultrasonic testing could be utilized for the evaluation of adhesive layer in the rocket motor case assembly.

  • PDF