• 제목/요약/키워드: Ultrasonic Pulse Velocity (UPV)

검색결과 47건 처리시간 0.026초

초음파 속도 모니터링에 의한 모르터의 초기재령 특성 평가 (Assessment of Early-age Properties of Mortar by Monitoring of Ultrasonic Pulse Velocity)

  • 이회근;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.245-250
    • /
    • 2001
  • Ultrasonic pulse velocity(UPV) is a useful tool for examining the property of early-age mortar or concrete. Thus, UPV has been used for a long time to characterize setting and hardening of cementitious materials. In this study, in order to investigate the characteristics of setting for mortar, UPV was measured using automatic monitoring system up to 3 days after casting. Test results show that UPV of high water to binder ratio(w/b) mortar remained constant at the beginning of hydration and then abruptly began to increase. However, UPV of low w/b mortar gradually increase due to setting retard caused by use of superplasticizer. Furthermore, the development of UPV for mortar with fly ash is slower than that of mortar without fly ash. It was concluded that the property change of mortar or concrete, such as setting and hardening can be assessed by monitoring of UPV.

  • PDF

비소성 황토의 치환율에 따른 구조용 콘크리트의 초음파 속도 분석 (Analysis of Non-Sintered Hwangto Replacement Rate in Structural Concrete on Ultrasonic Pulse Velocity)

  • 김원창;최희용;최형길;남정수;이태규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.45-46
    • /
    • 2022
  • In this study, ultrasonic pulse velocity is compared on non-sintered hwangto concrete(NHTC) and normal concrete(NC) at ages. Strength of specimens set up 30MPa. Cement is replaced with 15 and 30% non-sintered hwangto. UPV is tested at 1, 3, 7, 28, 56, 91 days. As a result, UPV increases as the age and strength increase, but decreases as the non-sintered hwangto replacement increases. Although ultrasonic pulse velocity of NHTC was 72% lower than NC, after that, difference tends to decrease

  • PDF

RC 및 PSC 콘크리트에서 반발도 및 초음파 속도의 변화에 대한 연구 (A Study on the Statistical Distribution of Rebound Number and Ultrasonic Pulse Velocity in RC and PSC Concrete Structures)

  • 사민형;윤영근;이인복;우인성;오태근
    • 한국안전학회지
    • /
    • 제32권4호
    • /
    • pp.53-58
    • /
    • 2017
  • The rebound hammer test and the measurement of ultrasonic pulse velocity(UPV) have been widely used for the physical properties & condition evaluation of reinforced & prestressed concrete structures for a long time, but the acoustoelastic effects by the prestressing in the prestressed concrete structures on the rebound number and ultrasonic pulse velocity have not been studied clearly. Therefore, this study investigated the data distribution of the rebound numbers and ultrasonic pulse velocities in reinforced and prestressed concrete slabs of $3000{\times}3000mm$ with a thickness of 250 mm. Also, the Kolmogorov-Smirnov goodness-of-fit test was done in order to identify statistical consistency and reliability. The statistical analysis results show that the rebound number and ultrasonic pulse velocities increased about 1.9% and 2.5%, respectively when prestressing was applied. As expected, the UPV shows better statistical reliability and potential for in situ evaluation than the RB because the RB are more sensitive to testing posture, surface condition, temperature and humidity so on. The experimental data in this study can be used for the condition assessment of reinforced and prestressed concrete structures by the rebound number and ultrasonic pulse velocity.

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

초음파 속도를 이용한 콘크리트의 응결 및 초기 강도 추정 (Estimation of Setting Time and Early-age Strength of Concrete Using the Ultrasonic Pulse Velocity)

  • 이회근;이광명;김영환;임현준
    • 비파괴검사학회지
    • /
    • 제22권3호
    • /
    • pp.292-303
    • /
    • 2002
  • 본 연구에서는 모르타르와 콘크리트의 초음파 속도를 자동적으로 측정할 수 있는 모니터링 시스템을 이용하여 물-결합재 비(W/B) 가 $0.27{\sim}0.50$인 모르타르와 콘크리트의 초음파 속도를 배합 직후부터 24시간까지 측정하였다. 또한, 용결 시간과 압축강도를 측정하기 위해 관입 저항 시험과 압축강도 시험을 각각 수행하였다. 실험결과로부터, 보통강도 콘크리트 배합의 초음파 속도는 배합 후 수 시간 동안에는 일정하다가 이후부터 갑자기 증가하는 경향을 보인 반면에, 고강도 콘크리트 배합에서는 고성능 감수제의 사용에 따른 응결 지연으로 초음파 속도가 서서히 증가하는 경향을 보였다. 그리고, 콘크리트의 응결은 초음파 속도가 소정의 속도에 도달했을 때 발생하는 것으로 나타냈다. 또한, 초음파 속도로부터 재령 3일 이하의 초기 강도 추정식에 W/B의 영향을 고려하면 보다 정확한 예측이 가능하리라 판단된다.

Estimating properties of reactive powder concrete containing hybrid fibers using UPV

  • Nematzadeh, Mahdi;Poorhosein, Reza
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.491-502
    • /
    • 2017
  • In this research, the application of ultrasonic pulse velocity (UPV) test as a nondestructive method for estimating some of the mechanical and dynamic properties of reactive powder concrete (RPC) containing steel and polyvinyl alcohol (PVA) fibers, as well as their combination was explored. In doing so, ten different mix designs were prepared in 19 experimental groups of specimens containing three different volume contents of steel fibers (i.e., 1, 2, and 3 %) and PVA fibers (i.e., 0.25, 0.5, and 0.75 %), as well as hybrid fibers (i.e., 0.25-0.75, 0.5-0.5, and 0.75-0.25 %). The specimens in these groups were prepared under the two curing regimes of normal and heat treatment. Moreover, the UPV test results were employed to estimate the compressive strength, dynamic modulus, shear modulus, and Poisson's ratio of the RPC concrete and to investigate the quality level of the used concrete. At the end, the effect of the specimen shape and in fact the measuring distance length on the UPV results was explored. The results of this research suggest that the steel fiber-containing RPC specimens demonstrate the highest level of ultrasonic pulse velocity as well as the highest values of the mechanical and dynamic properties. Moreover, heat treatment has a positive effect on the density, UPV, dynamic modulus, Poisson's ratio, and compressive strength of the RPC specimens, whereas it leads to a negligible increase or decrease in the shear modulus and static modulus of elasticity. Furthermore, the specimen shape affects the UPV of fiber-lacking specimens while negligibly affecting that of fiber-reinforced specimens.

초기 재령에서 비소성 황토 혼입 고강도 콘크리트의 압축강도 발현 예측을 위한 초음파 속도법 검토 (UPV Prediction Method on Compressive Strength of High Strength Concrete Mixed with Non-Sintered Hwangto at Early Age )

  • 남영진;김원창;최형길;김규용;이태규
    • 한국건설순환자원학회논문집
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 2023
  • 본 연구에서는 초기 재령에서 NSH(Non-sintered Hwangto) 치환율에 따른 고강도 콘크리트의 역학적 특성을 평가하였다. NSH의 치환율은 15 % 및 30 %로 설정했다. 평가 항목은 압축강도와 UPV(Ultrasonic pulse velocity)로 설정하였으며, 최종적으로 UPV분석을 통해 압축강도 예측 방정식을 제안하였다. 압축강도와 UPV에서는 NSH 치환율이 증가할수록 낮은 강도 및 UPV를 보였다. 또한 압축강도와 UPV의 상관관계 분석 결과, 상관계수(R2)는 NC33(Normal concrete)은 0.99, NSHC(Non-sintered Hwangto Concrete)33-15는 0.97, 그리고 NSHC33-30은 0.94로 높은 상관관계를 나타냈다.

The use of neural networks in concrete compressive strength estimation

  • Bilgehan, M.;Turgut, P.
    • Computers and Concrete
    • /
    • 제7권3호
    • /
    • pp.271-283
    • /
    • 2010
  • Testing of ultrasonic pulse velocity (UPV) is one of the most popular and actual non-destructive techniques used in the estimation of the concrete properties in structures. In this paper, artificial neural network (ANN) approach has been proposed for the evaluation of relationship between concrete compressive strength, UPV, and density values by using the experimental data obtained from many cores taken from different reinforced concrete structures with different ages and unknown ratios of concrete mixtures. The presented approach enables to find practically concrete strengths in the reinforced concrete structures, whose records of concrete mixture ratios are not yet available. Thus, researchers can easily evaluate the compressive strength of concrete specimens by using UPV values. The method can be used in conditions including too many numbers of the structures and examinations to be done in restricted time duration. This method also contributes to a remarkable reduction of the computational time without any significant loss of accuracy. Statistic measures are used to evaluate the performance of the models. The comparison of the results clearly shows that the ANN approach can be used effectively to predict the compressive strength of concrete by using UPV and density data. In addition, the model architecture can be used as a non-destructive procedure for health monitoring of structural elements.

Assessment of the unconfined compression strength of unsaturated lateritic soil using the UPV

  • Wang, Chien-Chih;Lin, Horn-Da;Li, An-Jui;Ting, Kai-En
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.339-349
    • /
    • 2020
  • This study investigates the feasibility of using the results of the UPV (ultrasonic pulse velocity) test to assess the UCS (unconfined compressive strength) of unsaturated soil. A series of laboratory tests was conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compressive test was combined with the pressure plate test to obtain the unconfined compressive strength and its matric suction (s) of the samples. Soil samples were first compacted at the designated water content and subsequently subjected to the wetting process for saturation and the following drying process to its target suction using the apparatus developed by the authors. The correlations among the UCS, s and UPV were studied. The test results show that both the UCS and UPV significantly increased with the matric suction regardless of the initial compaction condition, but neither the UCS nor UPV obviously varied when the matric suction was less than the air-entry value. In addition, the UCS approximately linearly increased with increasing UPV. According to the investigation of the test results, simplified methods to estimate the UCS using the UPV or matric suction were established. Furthermore, an empirical formula of the matric suction calculated from the UPV was proposed. From the comparison between the predicted values and the test results, the MAPE values of UCS were 4.52-9.98% and were less than 10%, and the MAPE value of matric suction was 17.3% and in the range of 10-20%. Thus, the established formulas have good forecasting accuracy and may be applied to the stability analysis of the unsaturated soil slope. However, further study is warranted for validation.

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.