• 제목/요약/키워드: Ultrasonic Phantom

검색결과 58건 처리시간 0.031초

초음파트랜스듀서의 재질에 따른 실출력과 인체모사조직의 온열효과에 관한 연구 (A Study on the Actual Output and Thermal Effect in Tissue Mimicking Phantom by the Material of the Ultrasonic Transducer)

  • 유상현;최원재;이승원
    • 대한물리의학회지
    • /
    • 제10권1호
    • /
    • pp.91-97
    • /
    • 2015
  • PURPOSE: In this study investigated the thermal effect in tissue mimicking phantom by the material of the ultrasonic transducer in low intensity sonication. METHODS: The material of the ultrasonic transducer was made of ceramic, stainless steel, aluminum. Korea Testing Laboratory was measured of the three kinds of materials the total output of the ultrasonic transducer. Each material was measured core temperature and the actual output depending on the type of transducer. Agarose tissue mimicking phantom and silicone tissue mimicking phantom was made. Transducers made of three kinds of materials were emitted in the phantom. It is shown as a graph about time and temperature and the surface temperature rising speed and deep temperature rise rate was investigated. RESULTS: Ceramic transducers were highest output. Higher than the stainless steel transducer, aluminum had the lowest total output. Deep temperature was the highest in the ceramic transducer, and the surface temperature was the highest in the stainless steel transducer. Thermal images of ceramic transducer showed that a valid output is formed deeper wider than the metal. CONCLUSION: Ceramic transducer is confirmed the excellence than the metal transducer in deep thermal effect and the actual output of the ultrasound.

B-mode 단층상에서의 초음파 빔의 굴절 영향 (Effects of Refraction of Ultrasonic Beam on B-mode Tomograms)

  • 최종수
    • 대한의용생체공학회:의공학회지
    • /
    • 제2권2호
    • /
    • pp.141-144
    • /
    • 1981
  • This paper descirbes about effects of refraction of ultrasonic beam on B-mode tomogram. Both compution based on Snell's law and the experiments performed using B-mode scanner and schlieren optical method are discussed on a circular phantom immersed in water. In these results, if the discrepancy of sound velocity is more than 0. 6%, the distortion of the B-mode image becomes conspicuous and a target beyound the phantom may disappear or displayed as two targets depending on the velocity of the phantom.

  • PDF

하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구 (A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom)

  • 김주영;정태웅;신경원;노시철;최흥호
    • 한국방사선학회논문지
    • /
    • 제12권3호
    • /
    • pp.427-433
    • /
    • 2018
  • 비침습적 치료 효과에 대한 기대로 집속 초음파를 이용한 하지정맥류 치료에 대한 많은 연구가 진행되고 있다. 본 연구에서는 초음파 정맥류 정맥 치료 효과 평가에 적용할 수 있는 생체 조직 팬텀과 조직 등가 팬텀을 제시 하였다. 제작된 팬텀은 음향학적 특징과 초음파 조사에 따른 수축률을 평가함으로써 유용성을 평가하였다. 하지정맥류가 발생하는 조직의 구조를 고려하여 피부, 지방, 근육의 세 층으로 된 다층 구조 팬텀을 제작하였으며, 각 층을 구성하는 물질은 인체와 유사한 특성을 갖도록 제작하였다. 또한 혈관 유사물질을 매식한 다층 구조 팬텀과 동물 혈관을 이용한 다층 구조 팬텀, 동물 조직을 이용한 다층 구조 팬텀을 제작하였으며, 초음파 조사에 따른 혈관 유사 물질 및 혈관 조직의 수축 정도를 B-mode 영상을 이용하여 평가하였다. 본 연구의 결과를 통하여 제시된 팬텀이 초음파 하지정맥류 치료 평가에 유효하게 활용될 수 있을 것으로 판단되었다. 또한, 집속 초음파를 이용한 하지정맥류 치료 장비 개발 및 치료 효과 검증에 중요한 역할을 할 것으로 판단된다.

한방부인과 임상실습교육에서 초음파 팬텀의 활용과 효과 (The Use and Educational Effect of Ultrasonic Phantom in Korean Medicine Obstetrics and Gynecology Clinical Practice Education)

  • 양승정;조성희
    • 대한한방부인과학회지
    • /
    • 제35권2호
    • /
    • pp.16-27
    • /
    • 2022
  • Objectives: The purpose of this study is to analyze educational effect of ultrasound examination training with ultrasonic phantom in the department of Korean Medicine Obstetrics and Gynecology. Methods: All 4th grade students in 2021 and 2022 of school of Korean Medicine, Dong-Shin University must be trained in the department of Korean Medicine Obstetrics and Gynecology according to ultrasound examination training guideline including Objective Structured Clinical Examination (OSCE). After completing ultrasound examination training, we distributed questionnaires to them about a confidence before OSCE and after OSCE, difficulty in using ultrasound, ultrasound reading, difficulty with probe manipulation and computer operation, ultrasound understanding, clinical usefulness. And then, we analyzed the related factors including descriptive statistics, frequency analysis, student's t-test and paired t-test by SPSS 12.0. Results: Confidence in using ultrasound showed differences among students by gender and year, but it was not statistically significant. The difficulty of ultrasound use and ultrasound reading was at a moderate level, and the gender difference was not significant, and the difference between the practical students by year was statistically significant. The difficulty of the operation of the ultrasonic probe was at a normal level, and the difference between the students in practice by gender and year was not statistically significant. Although they answered that they had a very good understanding of the use of ultrasound, there was a gender difference and it was statistically significant, and practical students by year was not statistically significant. They answered that the effect on clinical use was very sufficient, but it was not statistically significant. The appropriateness of the practice time was evaluated at a moderate level. Conclusions: The use and educational effect of ultrasound examination using ultrasonic phantom in the department of Korean Medicine Obstetrics and Gynecology clinical practice education was very effective.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

Quality Evaluation of Ultrasonographic Equipment Using an ATS-539 Multipurpose Phantom in Veterinary Medicine

  • Cho, Young-kwon;Lee, Youngjin;Lee, Kichang
    • 한국임상수의학회지
    • /
    • 제39권3호
    • /
    • pp.114-120
    • /
    • 2022
  • The purpose of this study is to examine the status of quality control using multipurpose phantom of ultrasound equipment used in hospital of veterinary college in South Korea by using ATS-539 multipurpose phantom so as to examine quantitative and objective new image evaluation method. Specialists discussed and analyzed multipurpose phantom images acquired by using convex transducer of 10 ultrasound imaging devices, currently used in 9 veterinary colleges, at 4.0-6.0 MHz. Total 8 items that can be measured with ATS-539 multipurpose phantom including dead zone, vertical and horizontal measurement, axial/lateral resolution, sensitivity, focal zone, functional resolution and gray scale/dynamic range were evaluated. For qualitative evaluation, valid decisions were made based on dead zone, axial/lateral resolution, and gray scale/dynamic range which are resolution index, and coefficient of variation (COV) and blind referenceless image spatial quality evaluator (BRISQUE) were found to increase objectivity. As a result of experiment, all the targeted ultrasonic devices were found appropriate from qualitative evaluation items of dead zone, axial/lateral resolution, and gray scale/dynamic range. In other evaluation items, they were found to be appropriate from focal zone and vertical measurement of quantitative evaluation while inappropriate from horizontal measurement, sensitivity, and functional resolution. COV value was 0.12 ± 0.04, and BRISQUE value was 47.77 ± 2.77, both analysis results show that the noise level of all ultrasonic devices was located within tolerance range. Upon image examination using ATS-539 multipurpose phantom, they were 100% appropriate with inspection standards of dead zone, axial/lateral resolution, and gray scale/dynamic range, and besides, focal zone and functional resolution can be used as evaluation items. In the field of veterinary medicine, 8 standard items using ATS-539 multipurpose phantom and image evaluation items using COV and BRISQUE can be used as standards for quality control of ultrasonography machine.

변형된 Wiener 필터를 이용한 초음파 B스캔영상의 해상력 향상 (Resolution Enhancement of Ultrasonic B-scan Images by Modified Wiener Filter)

  • 정준영;진영민
    • 대한의용생체공학회:의공학회지
    • /
    • 제11권1호
    • /
    • pp.113-120
    • /
    • 1990
  • In this paper, the deconvolution method utilizing a modified Wiener filter is applied for the enhancement of lateral resolution of ultrasonic B-scan Images. For this purpose, a phantom composed of wires which are 0.6mm of diameter and apart in the range between 3 to 9mm is constructed. The modified Wiener filter with optimal parameter is applied to the phantom for the analysis of ultrasonic image. The results obtained are as follows'When all parameters of the modified Wiener filter are optimal, the resolution of B-scan images is enhanced by 50 percent : Othenrise, the images are blurred, spilt at peak points, or noises are strengthened severely. When the point-spread function representing the characteristic function of the system is determined, the selection ranges of op- timum parameters may be narrowed. It is expected that the proposed method may be able to apply to clinic situations for more accurate image analysis by means of reducing the loss of important information.

  • PDF

Improved Attenuation Estimation of Ultrasonic Signals Using Frequency Compounding Method

  • Kim, Hyungsuk;Shim, Jaeyoon;Heo, Seo Weon
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.430-437
    • /
    • 2018
  • Ultrasonic attenuation is an important parameter in Quantitative Ultrasound and many algorithms have been proposed to improve estimation accuracy and repeatability for multiple independent estimates. In this work, we propose an improved algorithm for estimating ultrasonic attenuation utilizing the optimal frequency compounding technique based on stochastic noise model. We formulate mathematical compounding equations in the AWGN channel model and solve optimization problems to maximize the signal-to-noise ratio for multiple frequency components. Individual estimates are calculated by the reference phantom method which provides very stable results in uniformly attenuating regions. We also propose the guideline to select frequency ranges of reflected RF signals. Simulation results using numerical phantoms show that the proposed optimal frequency compounding method provides improved accuracy while minimizing estimation bias. The estimation variance is reduced by only 16% for the un-compounding case, whereas it is reduced by 68% for the uniformly compounding case. The frequency range corresponding to the half-power for reflected signals also provides robust and efficient estimation performance.

초음파 응답특성 분석에 의한 위장 경화 진단시스템의 설계 (Design of Gastrointestinal Diagnosis System based on Ultrasonic Response Characteristics)

  • 임도형;김은근;이균정;박원필;김한성;신태민;최서형;이용흠
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.250-257
    • /
    • 2007
  • Functional gastrointestinal disorders affect millions of people of all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. The aim is, therefore, to develop a diagnostic method for the functional gastrointestinal disorders based on quantitative measurement of the rigidity of the gastrointestinal tract well using ultrasound technique. For this purpose, a preliminary ultrasound diagnostic system was developed and verified through phantom tests. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders(Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normalspecimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens $(0.2{\pm}0.1Vp-p)$ at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens $(0.1{\pm}0.0Vp-p)$ (p<0.05). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals nea. to the gastrointestinal tract well for the patient group$(2.6{\pm}0.3Vp-p)$ were generally higher than those in normal group$(0.1{\pm}0.2Vp-p)$ (p<0.05). These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.

초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발 (Ultrasonic Phantom Based on Plastic Material for Elastography)

  • 안동기;정목근
    • 비파괴검사학회지
    • /
    • 제29권4호
    • /
    • pp.368-373
    • /
    • 2009
  • 초음파 의료용 탄성 영상 시스템의 성능을 평가하기 위한 인체 조직 모사 팬텀을 제작하였다. 인체에서 종양이나 암 조직은 주위의 정상조직보다 단단한 특성을 가진다. 이러한 조직의 단단함을 영상화하는 기법이 탄성 영상 기법이다. 인체의 병변 조직의 기계적인 특성을 모사하기 위하여 플라스틱 경화제와 연화제를 이용하여 탄성도가 다른 균일 탄성 팬텀을 제작하였다. 제작된 균일 탄성 팬텀은 시료의 비율에 따라 $11.1{\sim}79.6$ kPa 범위의 탄성계수 값을 얻었다. 이를 바탕으로 외부 매질과 내부 매질의 탄성계수 차이가 5배와 7배 정도인 초음파 병변 모사 팬텀을 제작하여 탄성 영상을 획득하였다. 본 논문에서는 제작된 플라스틱 기반의 탄성 팬텀이 인체의 탄성 특성을 모사하는 탄성 팬텀으로서 유용함을 확인하였다.