• Title/Summary/Keyword: Ultrafine Grained Materials

Search Result 38, Processing Time 0.028 seconds

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

Nanocrystalline and Ultrafine Grained Materials by Mechanical Alloying

  • Wang, Erde;Hu, Lianxi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.829-830
    • /
    • 2006
  • Recent research at Harbin Institute of Technology on the synthesis of nanocrystalline and untrafine grained materials by mechanical alloying/milling is reviewed. Examples of the materials include aluminum alloy, copper alloy, magnesium-based hydrogen storage material, and $Nd_2Fe_{14}B/{\alpha}-Fe$ magnetic nanocomposite. Details of the processes of mechanical alloying and consolidation of the mechanically alloyed nanocrystalline powder materials are presented. The microstructure characteristics and properties of the synthesized materials are addressed.

  • PDF

Fabrication of Ultrafine Grained Structure Materials by Equal Channel Angular Pressing (ECAP 강소성 가공에 의한 구조재료 초미세립화)

  • Kim W. G.;Ahn Y. J.;Shin D. H.;Park K. T.;Ko Y. G.;Lee J. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.126-129
    • /
    • 2005
  • Microstructures and tensile properties of low carbon steels, 5083 Al alloy and Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) were examined in order to understand their deformation response associated with a formation of an ultrafine grained (UFG) structure. Room temperature tensile properties of UFG low carbon ferrite/pearlite steels and UFG ferrite/martensite dual phase steel were compared for exploring a feasibility enhancing the strain hardening capability of UFG materials. In addition, low temperature and high strain rate superplasticity of the two grades of the UFG 5083 Al alloy, and Ti-6Al-4V alloy were presented. From the analysis of a series of experiments, it was found that UFG materials exhibited the enhanced mechanical properties compared to coarse grained counterparts.

  • PDF

Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel

  • Kim, Ho-Kyung;Park, Myung-Il;Chung, Chin-Sung;Shin, Dong-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1246-1252
    • /
    • 2002
  • Ultrafine grained (UFG) low carbon (0.15 wt.% C) steel produced by equal channel angula. pressing (ECAP) was tested for investigating the effect of load ratio on the fatigue crack growth rate. Fatigue crack growth resistance and threshold of UFG steel were lower than that of asreceived coarse grained steel. It was attributed to the less tortuous crack path. The UFG steel exhibited slightly higher crack growth rates and a lower △Kth with an increase of R ratio. The R ratio effect on crack growth rates and △Kth was basically indistinguishable at lower load ratio (R >0.3), compared to other alloys, which indicates that contribution of the crack closure vanishes. The crack growth rate curve for UFG steel exhibited a longer linear extension to the lower growth rate regime than that for the coarse grained as-received steel.

A Numerical Investigateion of the Effect of Die Friction in ECAP (Equal Channel Angular Pressing) (등통로각압축 (ECAP) 공정에서 다이 마찰 효과에 대한 수치적 연구)

  • 서민홍;김형섭
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • Equal channel angular pressing (ECAP) is a convenient forming process to extrude material without substantial changes in the sample geometry and this deformation process gives rise to produce ultrafine grained materials. The properties of the materials are strongly dependent on the plastic deformation behaviour during ECAP. The major process variables during ECAP are 1) die geometries, such as a channel angle and coner angles, and 2) the processes variables, such as lubrication and deformation speed. In this study, the plastic deformation behaviour of materials during the ECAP has been theoretically analysed by the finite element method (FEM). The effect of the die friction on the plastic deformation behaviour during the pressing is discussed by means of FEM calculations.

  • PDF

Homogeneity of Microstructure and Mechanical Properties of Ultrafine Grained OFHC Cu Bars Processed by ECAP (ECAP 가공에 의해 제조된 초미세립 OFHC Cu 봉재의 미세조직 및 기계적 특성의 균질성)

  • Ji, Jung Hoon;Park, Lee-Ju;Kim, Hyung Won;Hwang, Si Woo;Lee, Chong Soo;Park, Kyung Tae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.6
    • /
    • pp.474-487
    • /
    • 2011
  • Bars of OFHC Cu with the diameter of 45 mm were processed by equal channel angular pressing up to 16 passes via route $B_c$, and homogeneity of their microstructures and mechanical properties was examined at every four passes which develop the equiaxed ultrafine grains. In general, overall hardness, yield strength and tensile strength increased by 3, 7, and 2 times respectively compared with those of unECAPed sample. Cross-sectional hardness exhibited a concentric distribution. Hardness was the highest at the center of bar and it decreased gradually from center to surface. After 16 passes, overall hardness decreased due to recovery and partial recrystallization. Regardless of the number of passage, yield strength and tensile strength were quite uniform at all positions, but elongation showed some degree of scattering. At 4 passes, coarse and ultrafine grains coexisted at all positions. After 4 passes, uniform equiaxed ultrafine grains were obtained at the center, while uniform elongated ultrafine grains were manifested at the upper half position. At the lower half position, grains were equiaxed but its size were inhomogeneous. It was found that inhomogeneity of grain morphology and grain size distribution at different positions are to be attributed to scattering in elongation but they did not affect strength. The present results reveal the high potential of practical application of equal channel angular pressing on fabrication of large-sized ultrafine grained bars with quite homogeneous mechanical properties.

Ultrafine Grained Cu-diamond Composites using High Pressure Torsion (고압비틀림 공정으로 제조된 구리-다이아몬드 초미세립 복합재료)

  • Yoon, Eun-Yoo;Lee, Dong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.204-209
    • /
    • 2012
  • In this work, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Pure Cu powders were mixed with 5 and 10 vol% diamonds and consolidated into disc-shaped samples at room temperature by HPT at 1.25 GPa and 1 turn, resulting in ultrafine grained metallic matrices embedded with diamonds. Neither heating nor additional sintering was required with the HPT process so that in situ consolidation was successfully achieved at ambient temperature. Significantly refined grain structures of Cu metallic matrices with increasing diamond volume fractions were observed by electron backscatter diffraction (EBSD), which enhanced the microhardness of the Cu-diamond composites.

Ultrafine Grained Bulk Al Matrix Carbon Nanotube Composites Processed by High Pressure Torsion (고압비틀림 성형 공정에 의한 Al 기지 CNT 복합재료의 초미세결정 벌크화)

  • Joo,, S.H.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.423-428
    • /
    • 2010
  • Carbon nanotubes(CNTs) are expected to be ideal reinforcements of metal matrix composite materials used in aircraft and sports industries due to their high strength and low density. In this study, a high pressure torsion(HPT) process at an elevated temperature(473K) was employed to achieve both powder consolidation and grain refinement of aluminummatrix nanocomposites reinforced by 5vol% CNTs. CNT/Al nanocomposite powders were fabricated using a novel molecular-level mixing process to enhance the interface bonding between the CNTs and metal matrix before the HPT process. The HPT processed disks were composed of mostly equilibrium grain boundaries. The CNT-reinforced ultrafine grained microstructural features resulted in high strength and good ductility.

Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders (X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석)

  • Ahn, Dong-Hyun;Lee, Dong Jun;Kim, Wooyeol;Park, Lee Ju;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

Mechanical Properties of Ultrafine Grained Materials via Equal-Channel Angular Pressing (ECAP가공에 의한 초미세립 소재의 기계적 물성)

  • Ko, Y.G.;Kim, W.G.;Ahn, J.Y.;Park, K.T.;Lee, C.S.;Shin, D.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.105-111
    • /
    • 2006
  • A study was made to investigate the microstructure and the mechanical properties of low-carbon steel, Al-Mg alloy and Ti-6Al-4V alloy each representing bcc, fcc and hcp crystal structures, respectively fabricated by equal-channel angular(ECA) pressing. After a series of ECA pressings was performed, most grains were significantly refined below ${\mu}m$ in diameter with high mis-orientation of grain boundaries irrespective of different crystal structure used. Regarding the strain hardening capability, tensile tests of ultrafine grain (UFG) dual-phase (ferrite/martensite) steel which was different from UFG ferrite-pearlite steel were carried out at ambient temperature, and corresponding mechanical properties were discussed in relation to modified C-J analysis. Low-temperature and/or high strain-rate superplasticity of the UFG Al-Mg alloy and UFG Ti-6Al-4V alloy were also studied. Based on the analysis used in this study, it was concluded that UFG alloys exhibited the enhanced mechanical properties as compared to coarse-grained (CG) counterparts.