• 제목/요약/키워드: Ultra-fine cement

검색결과 49건 처리시간 0.022초

균열주입재로서 초미립자 시멘트의 이용 (Use of Ultra Fine Cement Particles as Crack Repair Materials)

  • 이종열;정연식;이웅종;양승규;채재홍
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1205-1210
    • /
    • 2000
  • In this research we made the mean cement particle size 4 $\mu\textrm{m}$ which can penetrate even minor cracks based on the theory of J.K. Michel who reported particles can penetrate the crack of width up to 3 times of maximum particle size. The cement slurries were produced by adding super plasticizer. The slurries were tested with slurry characterization methods and its rheological properties were characterized. The early hydrated phenomena of ultra fine cement were observed by SEM, XRD and DSC during 24 hours. Mechanical properties of hardened slurry with JIS molds were also tested in 3, 7 and 28 days. The cracked specimens which were repaired with slurries produced various conditions were tested after 3, 7 and 28 days curing in the air and adhesion properties were characterized.

Statistical flexural toughness modeling of ultra high performance concrete using response surface method

  • Mosabepranah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • 제17권4호
    • /
    • pp.477-488
    • /
    • 2016
  • This paper aims to model the effects of five different variables which includes: cement content (C), the steel fiber amount (F), the silica fume amount (SF), the superplasticizer (SP), the silica fume amount (SF), and the water to cementitious ratio (w/c) on 28 days flexural toughness of Ultra High Performance Concrete (UHPC) as well as, a study on the variable interactions and correlations by using analyze of variance (ANOVA) and response surface methodology (RSM). The variables were compared by fine aggregate mass. The model will be valid for the mixes with 0.18 to 0.32 w/c ratio, 4 to 8 percent steel fiber, 7 to 13 percent cement, 15 to 30 percent silica fume, and 4 to 8 percent superplasticizer by fine aggregate mass.

고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가 (Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture)

  • 안상혁;전성일;남정희;안지환
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • 제19권6호
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

확장형 이중패커를 이용한 지하수 공벽과 내부케이싱의 구간차폐 그라우팅 기술에 대한 연구 (A Study on Grouting Technology Using Expansion Double Packers for Sectional Blocking between Groundwater Borehole and Inner Casing)

  • 조희남;최성욱;박종오;배세달;이병용;최상일
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권1호
    • /
    • pp.35-42
    • /
    • 2019
  • In installation of groundwater wells, grouting materials are injected between the groundwater borehole and the inner casing in order to prevent infiltration of contaminated groundwater from the top soil layers into wells. The injection device of grouting materials is commonly composed of an inlet head device with an expansion packer, a cylinder capable of storing the grouting materials, and an air cylinder. In this work, two types of common grouting materials, silicon and cement materials, were tested for their performances as grouting media. For silicon. silicon was mixed with clay or calcite, and tested for their tensile strength and underwater reactivity. Both silicon-clay and silicon-calcite mixtures had adequate flow and adhesiveness. For cement material, general cement, ultra-rapid harding cement, and natural cement were respectively mixed with three different soil types including coarse-grained granite, fine-grained granite, and gneiss, and direct shearing tests were conducted after hardening. Under grouting depth condition of 30 m, the minimum adhesive strength was greater for weathered gneiss than non-weathered gneiss with its maximum values obtained from the mixtures of ultra rapid-harding cement.

초미분말 애시를 혼합한 시멘트의 물성 (Physical Properties of Ultrafine Ash Blended Cement)

  • 유동우;변승호;송종택
    • 한국세라믹학회지
    • /
    • 제44권9호
    • /
    • pp.489-495
    • /
    • 2007
  • Effects of ultrafinely ground ash on the rheological properties of cement paste were investigated. Also compressive strength development and setting time of ultrafine ash blended cement mortar were investigated in the study. A sample with silica fume was included for comparison. According to the results of ultra fine ash blended cement paste in the lower W/B ratio, the fluidity were high, and the setting time was a little retarded. And the compressive strength of ultrafine ash blended mortar was increased in the long term. In the case of hardened cement paste at 28 days, $Ca(OH)_2$ contents was decreased in order of control, ultrafine ash, silica fume blended cement due to difference of the pozzolanic reaction.

잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성 (Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods)

  • 한민철;이홍규
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.536-544
    • /
    • 2016
  • 최근 초고층 구조물이 증가함에 따라 구조내력 확보를 위해 80~100 MPa 수준의 초고강도 콘크리트 사용이 증가하고 있는데, 이들 구성 재료 중 사용량이 가장 많은 골재는 종류나 특성에 따라 초고강도 콘크리트의 성능 및 경제성에 미치는 영향이 크므로 이에 대한 고찰이 요구된다. 이에 본 연구에서는 100 MPa 급 초고강도 콘크리트의 공학적 특성에 미치는 잔골재 영향을 고찰하고자, 석회암잔골재(LFA), 전기로 산화 슬래그 잔골재(EFA), 세척사(SFA) 및 화강암 부순 잔골재(GFA)의 4종과 이들을 상호 혼합한 4종의 혼합골재를 선정하여 초고강도 콘크리트의 공학적 특성을 고찰하고자 한다. W/B 20%에서 보통포틀랜드시멘트:플라이애시:실리카흄의 비율을 7:2:1로 조합한 콘크리트를 제조하였다. 연구결과에 따르면 LFA 사용 배합이 양호한 잔골재의 입형 및 입도 등 입자특성에 기인하여 동일 고성능 감수제 사용량에서 가장 높은 슬럼프 플로 및 높은 충전성을 확보하며, 혼합골재 사용 배합에 비해 전반적인 유동성이 우수함을 확인할 수 있었다. 또한, 압축강도 및 자기 수축 저감 성능은 EFA 및 LFA 사용 배합이 여타 골재 종류 및 혼합조합에 비해 골재 자체의 양호한 탄성계수 및 강도 그리고 EFA의 free-CaO에 기인하여 보다 양호한 성능을 갖고 있음을 확인하였다.

골재요인에 따른 초고강도 콘크리트의 잔존역학적 특성 (Residual Mechanical Properties of Ultra High Strength Concrete with Aggregate Factor)

  • 이희광;김규용;이태규;남정수;구경모;윤용상
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.211-212
    • /
    • 2011
  • It was very important to evaluate concrete experimentally at elevated temperature because concrete was filled with aggregate of concrete volume about 70 percent. Concrete exposure to high temperatures produces changes in its internal structure, for instance loss of its strength and deformation capacity, in extreme cases risking the service life of the structure. The work of this paper is performed to evaluate the thermal behavior of ultra-high strength concrete having different water to cement ratio (strength), fine aggregate to aggregate ratio and maximum size of coarse aggregate. For exposure to 500℃ during 1 hour, residual mechanical properties of the ultra-high strength concrete decreased as the s/a ratio decreases and the maximum size of coarse aggregate increases.

  • PDF

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF