• Title/Summary/Keyword: Ultimately Bounded

Search Result 47, Processing Time 0.028 seconds

Discrete Variable Structure Control for Linear Time-Varying Systems

  • Park, Kang-Bak;Teruo Tsuji;Tsuyoshi Hanamoto;S. Umerjan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.508-508
    • /
    • 2000
  • In this paper, a discrete-time variable structure controller for linear time-varying systems with time-varying disturbances is proposed. The proposed method guarantees that the system state is globally uniformly ultimately bounded (G,U.U.B.) under the existence of external disturbances.

  • PDF

Robust Motion Control of Robotic Manipulators with Nonadaptive Model-based Compensation (비적응 모델 보상법에 의한 강성로보트의 강인한 동작제어)

  • You, S. S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.102-111
    • /
    • 1994
  • This article deals with the problem of designing a robust algorithm for the motion control of robot manipulator whose nonlinear dynamics contain various uncertainties. To ensure high performance of control system, a model-based feedforward compensation with continuous robust control has been developed. The control structure based on the deterministic approach consists of two parts : the nominal control law is first introduced to stabilize the system without uncertainties, then a robust nonlinear control law is adopted to compensate for both the resulting errors(or structured uncertainties) and unstructured uncertainties. The uncertainties assumed in this study are bounded by polynomials in the Euclidean norms of system states with known bounding coefficients. The presented control scheme is relatively simple as well as computationally efficient. With a feasible class of desired trajectories, the proposed control law provides sufficient criteria which guarantee that all possible responses of the closed-loop system are uniformly ultimately bounded in the presence of uncertainties. Therefore, the control algorithm proposed is shown to be robust with respect to the involved uncertainties.

  • PDF

Leader-Follower Based Formation Control of Multiple Mobile Robots Using the Measurements of the Follower Robot (추종 로봇의 측정값들을 이용한 다중 이동 로봇의 선도-추종 접근법 기반 군집 제어)

  • Park, Bong Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.385-389
    • /
    • 2013
  • This paper proposes the leader-follower based formation control method for multiple mobile robots. The controller is designed using the measurements of the follower robot such as the relative distance and angle between the leader and the follower. This means that the follower robot does not require the information of the leader robot while keeping the desired formation. Therefore, the proposed control method can reduce the communication loss and the cost for hardware. From Lyapunov stability theory, it is shown that all error signals in the closed-loop system are uniformly ultimately bounded. Finally, simulation results demonstrate the effectiveness of the proposed control system.

Robust NN Controller for Autonomous Diving Control of an AUV

  • Li, Ji-Hong;Lee, Pan-Mook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.107-112
    • /
    • 2003
  • In general, the dynamics of autonomous underwater vehicles(AUVs) are highly nonlinear and time-varying, and the hydrodynamic coefficients of vehicles are hard to estimate accurately because of the variations of these coefficients with different navigation conditions. For this reason, in this paper, the control gain function is assumed to be unknown and the exogenous input term is assumed to be unbounded, although it still satisfies certain restrict condition. And these two kinds of wild assumptions have been seldom handled simultaneously in one system because of the difficulty of stability analysis. Under the above two relaxed assumptions, a robust neural network control scheme is presented for autonomous diving control of an AUV, and can guarantee that all the signals in the closed-loop system are UUB (uniformly ultimately bounded). Some practical features of the proposed control law are also discussed.

  • PDF

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Robust Decentralized Adaptive Controller for Trajectory Tracking Control of Uncertain Robotic Manipulators (비중앙 집중식 강성 적응 제어법을 통한 산업용 로봇 궤도추적제어)

  • 유삼상
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.329-340
    • /
    • 1994
  • This paper presents a dynamic compensation methodology for robust trajectory tracking control of uncertain robot manipulators. To improve tracking performance of the system, a full model-based feedforward compensation with continuous VS-type robust control is developed in this paper(i.e,. robust decentralized adaptive control scheme). Since possible bounds of uncertainties are unknown, the adaptive bounds of the robust control is used to directly estimate the uncertainty bounds(instead of estimating manipulator parameters as in centralized adaptive control0. The global stability and robustness issues of the proposed control algorithm have been investigated extensively and rigorously via a Lyapunov method. The presented control algorithm guarantees that all system responses are uniformly ultimately bounded. Thus, it is shown that the control system is evaluated to be highly robust with respect to significant uncertainties.

  • PDF

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

An output feedback control based on the adaptatation law for the estimation of the bound of the uncertainty (Uncertainty의 경계치 추정기법을 기초로 한 출력궤환제어)

  • Yoo, Dong-Sang;Choi, Han-Ho;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.687-690
    • /
    • 1991
  • In deterministic design of feedback controllers for uncertain dynamical systems, the bound on the uncertainty is an important clue to guarantee the asymptotic stability or uniform ultimate boundedness of the closed-loop system. In this paper, using only the measurable output we propose an adaptation law for the estimation of the bound of the uncertainty. And based on this adaptation law an adaptive control which renders the uncertain dynamical systems uniformly ultimately bounded is constructed.

  • PDF

Leader-following Approach Based Adaptive Formation Control for Mobile Robots with Unknown Parameters (미지의 파라미터를 갖는 이동 로봇들을 위한 선도-추종 방법 기반 적응 군집 제어)

  • Moon, Ssurey;Park, Bong-Seok;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1592-1598
    • /
    • 2011
  • In this paper, a formation control method based on the leader-following approach for nonholonomic mobile robots is proposed. In the previous works, it is assumed that the followers know the leader's velocity by means of communication. However, it is difficult that the followers correctly know the leader's velocity due to the contamination or delay of information. Thus, in this paper, an adaptive approach based on the parameter projection algorithm is proposed to estimate the leader's velocity. Moreover, the adaptive backstepping technique is used to compensate the effects of a dynamic model with the unknown time-invariant and time-varying parameters. From the Lyapunov stability theory, it is proved that the errors of the closed-loop system are uniformly ultimately bounded. Simulation results illustrate the effectiveness of the proposed control method.

Robust Adaptive Control for Nonlinear Systems Using Nonlinear Disturbance Observer (외란 관측기를 이용한 비선형 시스템의 강인 적응제어)

  • Hwang, Young-Ho;Han, Byung-Jo;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.327-329
    • /
    • 2006
  • A controller is proposed for the robust adaptive backstepping control of a class of uncertain nonlinear systems using nonlinear disturbance observer (NDO). The NDO is applied to estimate the time-varying lumped disturbance in each step, but a disturbance observer error does not converge to zero since the derivative of lumped disturbance is not zero. Then the fuzzy neural network (FNN) is presented to estimate the disturbance observer error such that the outputs of the system are proved to converge to a small neighborhood of the desired trajectory. The proposed control scheme guarantees that all the signals in the closed-loop are semiglobally uniformly ultimately bounded on the basis of the Lyapunov theorem. Simulation results are presented to illustrate the effectiveness and the applicability of the approaches proposed.

  • PDF