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An output feedback control based on the adaptatation law
for the estimation of the bound of the uncertainty
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Dep. of EE, KAIST, P.O. Box 150, Cheongryangni, Seoul 130-650.

Abstract : In deterministic design of feedback con-
trollers for uncertain dynamical systems, the bound on the
uncertainty is an important clue to guarantee the asymptotic
stability or uniform ultimate boundedness of the closed-loop
system. In this paper, using only the measurable output we
propose an adaptation law for the estimation of the bound
of the uncertainty. And based on this adaptation law an
adaptive control which renders the uncertain dynamical sys-
tems uniformly ultimately bounded is constructed.

1. Introduction

Recently, much attention has been paid to the problem
of designing feedback controllers for uncertain dynamical
systems containing uncertain elements due to model-
parameter uncertainty, extrancous disturbance and measure-
ment error. To design feedback controllers of such systems,
if a priori statistical information of the uncertainties is una-
vailable but bounds on the uncertainties are known, one can
consider a deterministic approach.

A number of researches within the deterministic
framework can categorized into two groups. One is to
design feedback controls based on Lyapunov minmax
approach[1-5]. The other is based on the theory of variable
structure systems|6-8].

In the above deterministic design, the assumptions that
the uncertainties are bounded and their bounds are available
to the designer are involved. And bounds on the uncertain-
ties are an important clue to guarantee the asymptotic sta-
bility or uniform ultimate boundedness of uncertain dynam-
ical systems. However, sometimes bounds on the uncer-
tainties may not be easily obtained because of the complex-
ity of structure of uncertainties. Especially, the magnitude

of extraneous disturbance can not be simply estimated.
Therefore, a methodology through which the boundary

values on the uncertaintics can be easily obtained is
required. A parameter adaptation method supplies a good
tool to solve this problem. Chen[9] introduced two adap-
tive schemes, that is, the leakage type and the dead-zone

type, for the estimation of the bound of the uncertainty, and
based on these adaptive schemes Chen constructed an adap-
tive control which makes all the signals of overall system
be uniformly bounded and uniformly ultimately bounded. In
the construction of this adaptive controller, all states must
be available. However, in most practical situations the state
is not directly available. -

In.this paper, under assumptions that all uncertaintics
are met the matching conditions and the norm of the
lumped uncertainty is cone-bounded on the state of system,
using only the measurable output vector we propose an
adaptation law for the estimation of the bound on the
lumped uncertainty, and based on this adaptation law an
output feedback controller which guarantees the uniform
ultimate boundedness of every signal of overall system is
constructed.

2. Design of a nonlinear output feedback control

Consider a class of uncertain linear dynamical systems
described by

()= Ax(t) + (B+AB(o)u(t) + Wv () 1)
y(&) =Cx(t) '

where x(t) € R” is the state, u(t) € R™ is the control,
y@)e R is the output vector, v(t) € RY is an extraneous
disturbance, and A, B, C, and W are constant matrices of
appropriate dimensions with B and C of full rank. AB(0)
represents the input matrix uncertainty. The unknown func-
tion 6():R = ¥ < RP is assumed to be Lebesque
measurable with 3, compact. The pair (4, B, C) is con-
trollable and observable. We assume that AB, and W
satisfy the so-called matching conditions {1-3]. That is,
Assumption 1 : There exist a function D () and a constant
matrix E such that

AB (o) = BD (0)
W =BE

If the following class of feedback controls is employed;
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u@)=Ky@t)+p(y) (¥

where K € R™ ! is a linear output feedback gain matrix
such that the spectrum of A, = A + BKC is contained in
the open left half plane, and p(y) is a nonlinear control for
suppression of the effect of uncertainties such that

B0 oy i hry il > €
PO = Wy pO il 3)
_&g_‘ﬂp(y) if IFypO I S €

where F € R™ and function p(:):R’ — R, will be
specified subsequently, the system (1) can be compactly
described by
x(t)=A.x(t) + Bp(y) + Be(y,0,¢) @
y@) =Cx()
where e(y, G, ) is the liumped uncertainty as follows:
e(y,0,t)=D(@)Ky(t) + D(©)p(y) + Fv ().
We define function p(y) such that

lle(y,0,0) < max IDK | Iy (o)1) + max 1DlpG)
+IFvil 2 piy)

Provided that 1 ~ max||DJ| > 0, the definition of p(-) is
ol

_valid. Throughout this paper, vector norms are Euclidean
and matrix norms are the corresponding induced ones. That

is, for a real matrix H, 1| = VAy[HT H] where Ayjgmyl']
is the largest (smallest) eigenvalue of a given matrix. Thus,
onc obtains

PO = Bo+Bullyll (5

where
Brl2n1~ r:a:xuuur‘uﬁvn ,
B2~ max||D nr‘rg“ag DK I.

Before stating and prooving main theorem, we intro-
duce the following lemma.
Lemma 1 : For any F € R™!, if (A, B, FC) is controll-
able and observable and Gp(s)=FC(s/ —A.)'B is
strictly positive real, then there exist symmetric positive
definite matrices P and Q such that

PA, +ATP =—Q ®
“and
FC =BTP m
Proof : see Steinberg and Corless[11].
Thus, if a matrix F € R™*/ can be found such that
Gr(s) is strictly positive real and (A, FC) is observable,

then, FC = BTP where P satisfies (6) for some symmetric
positive definite matrix Q.

Theorem 1 : Consider the uncertain dynamical system
described by (1). If assumption 1 is valid and there exists
a matrix F satisfies Lemma 1, then the state is uniformly
bounded. That is, if x(-):[tg, £;] = R" is a solution to the
system (1) and (2) with llx(¢g)l} S 7, then ()l S d(r) for
all t € [tg, t;] where

4y = RAMIPVALPT ifr <R
(r)= rAIPIIA,IP] ifr>R
and R = \IZETXMIQ ].

Furthermore, x (¢) is uniformly ultimately bounded. That is,

if x(-):(tq, =) = R" is a solution to the system (1) and (2)

with [x (¢ )1l < r, then, for given d > R\Ay [P 1VALIP]
Hz@Wsd forallt 219+ T, 1)

where

ifr <R

. 0
Td.n= ifr >Rk

ry[P1 = Ry [P]
R%,101-2

and R = A TPTK,IP1.

Proof : We consider the Lyapunov function candidate
V():R" = R, given by

V(x)=xTPx

where P is defined in Lemma 1. The time-derivative of
V(x) along the system trajectory is given by

Vx) = 2T pi
=2TP{A.x + Bp(y) + Be(y,0,1))
In case of ||[Fyp(y)ll > €, from (3), (5), and Lemma'l,
V(x) s -x70x - 2Fy po)ll + 2IFy oo i

= —XTQX (8)
And if [Fyp(y)ll S €, by similar operations
Vx) < -xTOx + 2 ' L))

Consequently, from (8) and (9)
V@) S A [QUI? + 2

for all x € R". Then, the uniform boundedness and uni-
form ultimate boundedness immediately follow using the
standard arguments given by Corless and Leitmann. O

(19)

In the design of this class of feedback controls, one
knows that a continuous positive scalar function p(:) is an
important clue to guarantee uniform ultimate boundedness
of uncertain dynamical systems.

In this paper, our goals are to propose an adaptation
law for the bound on the lumped uncertainty, e(y,o, t),
and to design an adaptive control which guarantees the uni-
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form ultimate boundedness of every signal of overall sys-
tem.

3. Design of an adaptive control
Now, consider an adaptive control as follows:

1) Control law :

__I:ZM_)_ ﬁ(y’t}
IFy P, ol
pxy=

L0 .01 it ey oy o

ifFypo. Ol >¢
1y
<E

where p(y,1) = By+ Bullyll and Py and B, are adaptive
parameters on By and By, respectively.
2) Adaptation law :

Bi() = ~0,&B; @) + &UFy Kl for i =0,1(12)

where ¢; and E; are adaptation gains which are positive
constants.

Note that if we choose the nonnegative initial values,
B, (1), a solution of (12) is always nonnegative. And P(y, )
is s0.

Let  B=1Bo BT, BO)=Bo) BT, and
Be)=Pe) - B = (Boe). Bye)”. Since we assume that By

and B, are constants, the following relationship is valid:
B =B

Here, we consider the following Lyapunov function,
V() : R"xR?* = R, such that

fori =0,1

1
Ve, B =xTPx + EB?I% (13)
i=0

where ¢; is defined in (12). The time-derivative of V(x, B)
is as follows:

. . 1.
Vi, By =u"Pi + 238,
i=0

1 .
= 2P (A x+8p (Y 1+Be (y,0, N1+2 T B;Bilox

i=0

=-xTQx + 2xTPBp(y) + 27 PBe(y,0, 1) (14)

I
+ 2% BiBises
i=0

In case of [Fyp(y,1)|l > £, substituting (5), (11), and (12)
into (14), one obtains the following inequality:

. 1 ) 1 )
Vix, By =—xT0x - AFYIT By + 2Fy I T8N
i=0 i=0

1 A 1
+ 24Py I X B 2385 B;
i=0 i=0

=—xTQx 'legibiﬁi (15)
i=0

And if |FyP(y, )l < &, by similar operations

Ve, B S xT0x - 2XEBE, + 2 a6
i=0
Consequently, from resulis of (15) and (16),
R 1 1
Ve, B s Tox —23ERE - 23R 2 (D)

i=0 i=0
S Ao [Q I — 28, IBIE + 28, IBHUBY + 2¢

for all (x, B) € R"xR? where &, denotes the smallest
(largest) component of & = (&g, &1,

Let z() = [x(0), B))T, ¥ =min{A,[Q), 28,), and
¥4 = 2E4 lIBll. Then, (17) can be finally rewritten as follows:

V(z) < -allzf? + Yallzll + 28 forallz € R2.

Now, we are ready to state the following theorem.

Theorem 2 : Consider the uncertain dynamical system
described by (1). If Assumption 1 is valid and there exists a
matrix F satisfies Lemma 1, then z(r) is uniformly
bounded. Furthermore, z(t) is
bounded.,
Proof ; By procedure presented in {10}, we can prove that
every signal, that is, the adaptation error vector B(z) and the
state x (¢) are uniformly ultimately bounded to an arbitrary
neighborhood of the zero state. O

Remark : By choosing appropriate ¢, one can adjust
the rate of parameter adaptation. In theory, as ¢ is getting
larger, the rate of parameter adaptation is getting higher. In
practice, ¢ is limited by the bound of control input and
other practical considerations. And § prevents the fast adap-

tation. Thus, the system response is improved as § is get-
ting smaller.

uniformly  ultimately

4. Illustrative Example

In order to illustrate the effectiveness of the proposed
method, we consider a following uncertain linear system by

12-3 I+o(0) 0
A=l40-3, B+aB@=| 0 I+o00)|,
00 -3 0 0

1
01 -
el vl
100
0
Let a set of desired eigenvalues of the closed-loop system
be {-1, -2, -3). Then the matrices X, F, P, and Q are

32 01
24]"“:[10}’

K =
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100 210
p=lo1 -, 0=|1 4 -5
0-1 2 0 -5 34

Now, Oy(t) = sinx,, 6,(t) = cos3t, v(r) = sin3t, (0) = 0,
and £=001. For x(0) =[n/2, 0)7, observe the system
response, while changing the value of ¢. In Fig. 1, fixed §
= {0.001 0.001)7, dynamic responses (x,) are shown for ¢
=111 17 and {3 3 3)7, respectively. From this figure, as
¢ is getting larger, we know that the system response is
improved. This is the reason that the adaptation rate is get-
ting faster as ¢ is getting larger. This fact can be confirmed
by the progress of the parameter adaptation shown in Fig.
2,

1
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Fig. 1. Output trajcctorics.
(2o=01"b:¢=(33]M
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12

T SO - )

0 1 2 3 4 s
timefscc}

Fig. 2. The progress of parameter adaptation.
(x¢=111"0:¢=133D)

5. Conclusions

In order to control the uncertain dynamical system, the
bound of the uncertainty is an important factor but may not
be easily obtained by several reasons. Based on the adapta-
tion law for the estimation of the bound of the uncertainty,
the adaptive control is constructed using only the measur-
able output vector. The proposed method guarantees the
augmented overall system combined the original uncertain
dynamical system plus the adaptive algorithm uniformly
ultimately bounded. The simulation results show that the
proposed method effectively controls the uncertain dynami-
cal system, '
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