• Title/Summary/Keyword: Ultimate tensile strength

Search Result 495, Processing Time 0.031 seconds

A Study on the Changes in Microstructures and Mechanical Properties of Unidirectionally Solidified Al-Cu Alloys due to Cold-Rolling (Al-Cu 합금의 일방향 응고조직과 기계적 성질에 미치는 냉간압연의 영향)

  • Oh, Myung-Hwan;Ra, Hyong-Yong
    • Journal of Korea Foundry Society
    • /
    • v.3 no.1
    • /
    • pp.3-12
    • /
    • 1983
  • The influence of columnar dendirtes on the mechanical properties of Al-1% Cu alloys as unifirectionalloy solidified under the conditions of controlled crystal growth rate (R) and temperature gradient (G) was investigated. And the change of metallography and mechanical properties when unifirectionalloy solidified alloys and cast alloys were cold-rolled from 10% to 90% in reduction ratio was studied. The results are as follows: 1. The elongation and yield strength of unifirectionalloy solidified alloy are higher then those of cast alloy, but there is a little decrease in ultimate tensile strength. 2. The metallography and mechanical properties are changeable with the primary arm spacings when the unidirectionalloy solidified alloys were cold-rolled from 10% to 90% in reduction ratio. An alloy with larger primary arm spacings was easily changeable in metallography and mechanical properties when it was cold-rolled. 3. The tensile strength of transversely cold-rolled to 90% in reduction ratio was higher then that of longitudionalloy cold-rolled to 90% in reduction ratio. In the case, the fractorgraphs of fractured surface showed that the cast alloy and the unifirectionalloy solidified alloy was ductile-fractured, but the surface of transversely cold-rolled to 90% reduction of unidirection alloy solidified was slip plane qracture.

  • PDF

Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Qi, Min;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1589-1595
    • /
    • 2019
  • In this paper, the CLAM steel strengthened by micro-scale Y-Zr-O was prepared by vacuum induction melting followed by electroslag remelting (VIM-ESR). Yttrium (Y) and zirconium (Zr) were easy to aggregates into massive yttrium-zirconium-rich inclusions in the steel melted by vacuum induction melting (VIM), which would interrupt the continuity of the matrix and reduce the mechanical properties of steel. Micron-sized Y-Zr-O inclusions would be produced with the removal of original blocky Y-Zr-rich inclusions and the submicron-sized inclusions smaller than $0.2{\mu}m$ could be retained in the steel. The small grain size and the better refinement and distribution uniformity of Y-Zr-O inclusions after remelting would be responsible for the better yield strength and toughness. For VIM-ESR alloy, the ultimate tensile strength is 749 MPa and the yield strength is 642 MPa at room temperature, meanwhile they are 391 MPa and 367 MPa at $600^{\circ}C$, respectively. Meanwhile, the ductile-brittle transition temperature (DBTT) reduced from $-43^{\circ}C$ (VIM) to $-76^{\circ}C$ (VIM-ESR).

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF

Tensile Strain of Steel Fiber Reinforced Concrete under Fatigue Load (피로하중을 받는 강섬유보강콘크리트의 인장변형에 관한 연구)

  • 장동일;채원규;박철우;민인기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.82-87
    • /
    • 1992
  • In this thesis, the fatigue tests were performed on a series of SFRC (steel fiber reinforced concrete)to investigate the flexural tensile behavior of SFRC varying with the steel fiber contents and the steel fiber aspect ratios. Beam specimens of 10$\times$10$\times$60cm are used. the specimen series are classified according to the steel fiber contents varying 0.5. 1.0, 1.5%, and to the steel fiber aspect ratios varying 60, 80, 100. The three point loading system was used in the fatigue tests. The minimum value of repeated loading was fixed at 10.0kgf and maximum value was 75% to static ultimate strength for periodically using concrete strain gages located at the lower end of the mid-span, and the stress-strain curves were drawn for each specimens, respectively. From the tests result, it was found that the larger steel fiber content and the smaller the steel fiber aspect ratio is , the tensile strain of SFRC under fatigue load proportionally increases. By the regression analysis on these results, the empirical formulae to predict the tensile strain of SFRC were suggested. In comparison of the tensile elastic modulus under fatigue load, it was also found that the larger steel fiber content and the smaller steel fiber aspect ratio is , the smaller decreasing rate of the stiffness of SFRC under fatigue load decreased.

  • PDF

A New Model for Accurate Nonlinear Analysis of Prestressed Concrete Members under Torsion (비틀림을 받는 프리스트레스트 콘크리트 부재의 새로운 비선형 해석 모델)

  • 오병환;박창규
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.159-168
    • /
    • 1994
  • The present study proposes a realistic method to analyze the prestressed concrete members subjected to torsion. For this end, this study devises a method to realistically take into account the tensile stiffness of concrete after cracking. The effects of biaxial compressive and tensile loadings on the compressive and tensile strengths of concrete are also taken into account in the present model. The comparison of the present theory with experimental data indicates that the proposed model dipicts reasonably well the actual behavior of prestressed concrete members subjected to torsion. The present model can predict not only the service load behavior, but also up to the behavior of ultimate load stages.

Deformation Characteristics of Miniature Tensile Specimens of a SA 508 C1.3 Reactor Pressure Vessel Steel

  • Byun, Thak-Sang;Chi, Se-Hwan;Hong, Jun-Hwa;Jeong, Ill-Seok;Hong, Sung-Yull
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.182-187
    • /
    • 1996
  • Deformation characteristics of miniature plate tensile specimens have been studied to develop the thickness requirement and a correlation to estimate the mechanical properties of bulk material from miniature specimen data. The material used was a SA 508 C1.3 reactor pressure vessel steel and the thicknesses of miniature tensile specimens varied from ().12 m to 2 mm. The effects of thickness on the tensile deformation properties such as strength, ductility, and necking characteristics were analyzed. The yield and ultimate tensile strengths were independent of specimen thickness when the thickness was larger than about 0.2 mm. The uniform and total elongations decreased as the specimen thickness decreased. It was also observed that the uniform strain component in the width direction decreased with decrease in the specimen thickness, however, that in the thickness direction was rather constant in total thickness range studied. Based on this observation and a relationship between the necking angle and the ratio between strain components, a correlation between the uniform elongations of miniature specimen and standard specimen was derived. The uniform elongations calculated by this new correlation agreed well with the measured values.

  • PDF

Charateristics of the Jointed Steel-Grid Reinforcement and the Application (결합강그리드보강재의 특성 및 적용)

  • Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.3
    • /
    • pp.15-22
    • /
    • 2002
  • To analysis of the embanked slope stability using a jointed reinforcement, the internal stability and the external stability have to be satisfied, respectively. But, because the lengths of ready-made steel-grid were limited, the reinforcements must be connecting themselves to the reinforcing. In this study, the mechanical test was carried out to investigate the tensile failure and the pullout failure at the joint parts of them, which was based on the analysis of reinforced slope in field. Through the tensile tests in mid-air for the jointed steel-grid, the deformation behavior was seriously observed as follows : deformation of longitudinal member, plastic deformation of longitudinal member and of crank part. Those effects were due to the confining pressure and overburden pressure of the surrounding ground. The bearing resistance at jointed part of jointed steel-grid was due to the latter only. The maximum tensile forces were higher about 20kN~27kN than ultimate pullout resistance, but, the results of those was almost the same in mid-soil. The failures of steel-grid occurred at welded point both of longitudinal members and transverse members and of jointed parts. The strength of jointed parts itself got pullout force about 20kN, which was about 65% for ultimate pullout force of the longitudinal members N=2. To the stability analysis of reinforced structure including the reinforced slope, the studying of connection effects at jointed part of reinforcement members must be considered. Through the results of them, the stability of reinforced structures should be satisfied.

The Mechanism of Shear Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 전단 저항 기구와 변형 능력)

  • Jang, Sang-Ki;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.50-53
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Flexural Properties of Glass Fiber Reinforced Polymer Concrete Composite Panel (리브를 갖는 유리섬유 보강 폴리머 콘크리트 복합패널의 휨 특성)

  • Kim, Soo-Bo;Yeon, Kyu-Seok;Yoo, Neung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.37-45
    • /
    • 2004
  • In this study, twelve different glass fiber reinforced polymer concrete composite panel specimens with various rib heights and tensile side and reinforced side thickness were produced, and the flexural tests were conducted to figure out the effect of The height and thickness influencing on the flexural properties of composite panel. Test results of the study are presented. Especially, a prediction equation of the ultimate moment based on the strength design method agrees well with the test results, and it is thought to be useful for the corresponding design of cross-section according to various spans as the glass fiber reinforced polymer concrete composite panel is applied for a permanent mold.

The Mechanism of Shear Resistance and Deformability for Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.233-240
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcement and the ratio of shear rebar. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. It is expected that this model can be applied to displacement-based design methods.

  • PDF