Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities
References
- Y. Xin, J. Qiu, X. Ju, T.D. Ma, L.P. Guo, Q.Y. Huang, Y.C. Wu, Microstructural evolution of the China Low Activation Martensitic (CLAM) steel irradiated by H and He ion beams, Nucl. Instrum. Methods Phys. Res. B 267 (18) (2009) 3166-3169. https://doi.org/10.1016/j.nimb.2009.06.073
- L. Toualbi, C. Cayron, P. Olier, J. Malaplate, M. Praud, M.-H. Mathon, D. Bossu, E. Rouesne, A. Montani, R. Loge, Y. de Carlan, Assessment of a new fabrication route for Fe-9Cr-1W ODS cladding tubes, J. Nucl. Mater. 428 (1-3) (2012) 47-53. https://doi.org/10.1016/j.jnucmat.2011.12.013
- Y.F. Li, H. Abe, T. Nagasaka, T. Muroga, M. Kondo, Corrosion behavior of 9Cr-ODS steel in stagnant liquid lithium and leadelithium at 873 K, J. Nucl. Mater. 443 (1-3) (2013) 200-206. https://doi.org/10.1016/j.jnucmat.2013.07.026
- R. Kasada, N. Toda, K. Yutani, H.S. Cho, H. Kishimoto, A. Kimura, Pre- and postdeformation microstructures of oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 367-370 (2007) 222-228. https://doi.org/10.1016/j.jnucmat.2007.03.141
-
J.H. Ahn, B.H. Park, J. Jang, Effect of ball-milling method on the formation of ODS Fe-14Cr-2Al-1Si-0.3Ta-
$1Y_2O_3$ powders, Solid State Phenom. 135 (2008) 65-68. https://doi.org/10.4028/www.scientific.net/SSP.135.65 - P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisaw, F. Abe, TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition, J. Nucl. Mater. 444 (1-3) (2014) 441-453. https://doi.org/10.1016/j.jnucmat.2013.10.028
- H.J. Xu, Zh Lu, D.M. Wang, Ch M. Liu, Microstructure refinement and strengthening mechanisms of a 9Cr oxide dispersion strengthened steel by zirconium addition, Nucl. Eng. Technol. 49 (1) (2017) 178-188. https://doi.org/10.1016/j.net.2017.01.002
- J. Isselin, R. Kasada, A. Kimura, Corrosion behaviour of 16% Cr-4%Al and 16%Cr ODS ferritic steels under different metallurgical conditions in a supercritical water environment, Corros. Sci. 52 (2010) 3266-3270. https://doi.org/10.1016/j.corsci.2010.05.043
- A. Yabuuchi, M. Maekawa, A. Kawasuso, Influence of oversized elements (Hf, Zr, Ti and Nb) on the thermal stability of vacancies in type 316L stainless steels, J. Nucl. Mater. 430 (2012) 190-193. https://doi.org/10.1016/j.jnucmat.2012.07.005
-
Z.M. Shi, F. Sh Han, The microstructure and mechanical properties of microscale
$Y_2O_3$ strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. 66 (2015) 304-308. https://doi.org/10.1016/j.matdes.2014.10.075 - M.A. Moghadasi, M. Nili-Ahmadabadi, F. Forghani, H.S. Kim, Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model, Sci. Rep. 6 (2016) 1-10. https://doi.org/10.1038/s41598-016-0001-8
- D.P. Zhan, G.X. Qiu, Zh H. Jiang, H. Sh Zhang, Effect of Yttrium and Titanium on Inclusions and the Mechanical Properties of 9Cr RAFM Steel Fabricated by Vacuum Melting, Steel Research International, 2017.
- Sh J. Liu, Q.Y. Huang, Ch J. Li, B. Huang, Influence of non-metal inclusions on mechanical properties of CLAM steel, Fusion Eng. Des. 84 (7) (2009) 1214-1218. https://doi.org/10.1016/j.fusengdes.2008.12.037
- Y.F. Li, Q.Y. Huang, Y.C. Wu, Y.N. Zheng, Y. Zuo, Sh Y. Zhu, Effects of addition of yttrium on properties and microstructure for China Low Activation Martensitic (CLAM) steel[J], Fusion Eng. Des. 82 (15-24) (2007) 2683-2688. https://doi.org/10.1016/j.fusengdes.2007.07.048
- G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effects of yttrium on microstructure and properties of reduced activation ferritic-martensitic steel, Mater. Sci. Technol. 34 (16) (2018) 2018-2029. https://doi.org/10.1080/02670836.2018.1509462
- W. Yan, P. HU, W. Wang, L.J. Zhao, Y.Y. Shan, K. Yang, Effect of yttrium on mechanical properties of 9Cr-2WVTa low active martensite steel, Chin. J. Nucl. Sci. Eng. 29 (1) (2009) 50-55.
- J.H. Shim, Y.J. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, D.N. Lee, Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater. 49 (12) (2001) 2115-2122. https://doi.org/10.1016/S1359-6454(01)00134-3
- A. Karasev, H. Suito, Analysis of size distributions of primary oxide inclusions in Fe-10 mass Pct Ni- M,(M=Si, Ti, Al, Zr, and Ce)alloy, Metall. Mater. Trans. B 30 (2) (1999) 259-270. https://doi.org/10.1007/s11663-999-0055-0
-
S. Morioka, H. Suito, Effect of oxide particles on
${\delta}/{\gamma}$ transformation and austenite grain growth in Fe-0.05-0.30%C-1.0%Mn-1.0%Ni alloy, ISIJ Int. 48 (3) (2008) 286-293. https://doi.org/10.2355/isijinternational.48.286 - G.X. Qiu, D.P. Zhan, Ch Sh Li, M. Qi, Zh H. Jiang, H. Sh Zhang, Effect of Y/Zr ratio on inclusions and mechanical properties of 9Cr-RAFM steel fabricated by vacuum melting, J. Mater. Eng. Perform. 28 (2) (2019) 1067-1076. https://doi.org/10.1007/s11665-018-3838-0
- Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, S. Liu, Influence of smelting processes on precipitation behaviors and mechanical properties of low activation ferrite steels, Mater. Sci. Eng. 528 (2) (2010) 657-662. https://doi.org/10.1016/j.msea.2010.09.088
- M.E. Alam, S. Pal, S.A. Maloy, G.R. Odette, On delamination toughening of a 14YWT nanostructured ferritic alloy, Acta Mater. 136 (1) (2017) 61-73. https://doi.org/10.1016/j.actamat.2017.06.041
- H. Sakasegawa, H. Tanigawa, S. Kano, H. Abe, Material properties of the F82H melted in an electric arc furnace, Fusion Eng. Des. 98-99 (2015) 2068-2071. https://doi.org/10.1016/j.fusengdes.2015.06.103
- Q.M.Wan, R.S. Wang, G.G. Shu, L.K. Weng, Analysis method of Charpy V-notch impact data before and after electron beam welding reconstitution, Nucl. Eng. Des. 241 (2) (2011) 459-463. https://doi.org/10.1016/j.nucengdes.2010.11.005
- J.G. Chen, Y. Ch Liu, Y.T. Xiao, Y.H. Liu, Ch X. Liu, H.J. Li, Improvement of high-temperature mechanical properties of low-carbon RAFM steel by MX precipitates, Acta Metall. Sin. 31 (7) (2018) 706-712. https://doi.org/10.1007/s40195-018-0703-y
- Y.B. Chun, S.H. Kang, D.W. Lee, S. Cho, Y.H. Jeong, A. Zywczak, C.K. Rhee, Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors, Fusion Eng. Des. 109-111 (2016) 629-633. https://doi.org/10.1016/j.fusengdes.2016.02.032
- L. Schaefer, Tensile and impact behavior of the reduced-activation steels OPTIFER and F82H mod, J. Nucl. Mater. 283-287 (2000) 707-710. https://doi.org/10.1016/S0022-3115(00)00115-X
- H. Tanigawa, A. Sawahata, M.A. Sokolov, M. Enomoto, R.L. Klueh, A. Kohyama, Effects of inclusions on fracture toughness of reduced-activation ferritic/ martensitic F82H-IEA steels, Mater. Trans. 48 (3) (2007) 570-573. https://doi.org/10.2320/matertrans.48.570
- R.L. Klueh, D.J. Alexander, P.J. Maziasz, Bainitic chromiumetungsten steels with 3 pct chromium, Metall. Mater. Trans. 28 (2) (1997) 335-345. https://doi.org/10.1007/s11661-997-0136-0
- R.L. Klueh, D.J. Alexander, M. Rieth, The effect of tantalum on the mechanical properties of a 9Cre2We0.25Ve0.07Tae0.1C steel, J. Nucl. Mater. 273 (2) (1999) 146-154. https://doi.org/10.1016/S0022-3115(99)00035-5
- Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1, J. Nucl. Mater. 367-370 (2007) 117-121. https://doi.org/10.1016/j.jnucmat.2007.03.012
Cited by
- Evolution of Microstructures and Mechanical Properties of Zr-Containing Y-CLAM During Thermal Aging vol.33, pp.6, 2019, https://doi.org/10.1007/s40195-020-01011-5
- Progress of zirconium alloying in iron-based alloys and steels vol.37, pp.9, 2019, https://doi.org/10.1080/02670836.2021.1958488