• Title/Summary/Keyword: Ultimate resistance

Search Result 435, Processing Time 0.023 seconds

Evaluation of Design Parameters for Axial Bearing Capacity of Drilled Shafts by Bi-directional Loading Tests (양방향말뚝 재하시험을 통한 현장타설말뚝의 연직지지력 설계정수 산정)

  • Jung, Gyung-Ja;Cho, Chong-Suck;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.574-584
    • /
    • 2006
  • Bi-directional loading test data are available to evaluate the design parameters which reflect the characteristics of a construction method and the variations of ground at the site where drilled shafts are installed. The method to obtain the design parameters of a real bridge by hi-directional loading test was introduced. The plans of multi-level testing and installation of measuring instruments should be made according to the rough estimation of axial bearing capacity, the length of pile, and the construction method. While the relationship between end bearing resistance and displacement was obtained directly from the hi-directional loading test, the relationship between unit side resistance and displacement was calculated through the measuring values. 1% displacement of pile diameter was adopted as the criteria of failure for ultimate resistance. As the settlement of pile head at the total ultimate bearing capacity obtained from these method was less than 1.5 % of pile diameter, this method was conservative to use in the field.

  • PDF

A Study on Behavior of Horizontal Pull-out Loaded suction pile in Sands (사질토지반에서 수평인발하중을 받는 석션말뚝에 관한 연구)

  • Kim, Jin-Bok;Park, Joung-Un;Jin, Hong-Min;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1120-1131
    • /
    • 2010
  • In this thesis the model tests were performed to the horizontal pull-out characteristics of a suction pile subjected to a pull in sands. For this model tests, soil conditions ($D_r$=65), three pile diameters (D=100, 150, 200mm) and five loading points (h/L=0, 0.25, 0.5, 0.75, 1) were changed. And the experimental results were also compared with those by the theoretical methods. The results by the experimental and theoretical analysis are as follows. The ultimate horizontal pull-out resistance by the model test increased as the loading point (h/L) moved downwards from the pile top, and the maximum value reached at the h/L=0.75. The theoretical ultimate horizontal pull-out resistance by Broms(1964) and Hong(1984) agreed well with that by the model test at h/L=0 and 0.25, but their results overestimated the experimental result at lower part of pile and the differences between the theoretical and experimental results were of great. While the horizontal loading applied at the upper part of pile, the pile moved to the horizontal direction with rotating clockwise. As the loading point moved downwards from the pile top, the rotating angle of pile was smaller.

  • PDF

Modifications to fire resistance ratings of steel frames based on structural configuration: A probabilistic-based approach

  • Behnam, Behrouz
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.661-672
    • /
    • 2021
  • In this article, the role of spans number and length in fire-resistance ratings (FRRs) of fireproofed steel frames are investigated. First, over a span-lengthening scenario, two one- and three-bay frames under the ISO834 fire are examined. It is shown that the FRRs of the frames rely highly on the changes made on their span length. Second, a building designed for three spans number of three, four, and five under natural fire is investigated. The beams are designed for two load-capacity-ratios (LCRs) of optimum and ultimate. The fire curves are determined through a probabilistic-based approach. It is shown that the structural vulnerability vastly increases while the number of spans decreases. The results show that for an optimum LCR, while the five-span frame can meet the required FRR in 87% of the fire scenarios, the four- and three-span frames can meet the required FRR in only 56%, and 50% of the fire scenarios, respectively. For an ultimate LCR, the five-, four- and three-span frames can meet the required FRR in 81%, 50%, and 37.5% of the fire scenarios, respectively. Functional solutions are then proposed to resolve the insufficiencies in the results and to rectify the application of the standard-based FRRs in the cases studied. The study here highlights how employing current standard-based FRRs can endanger structural safety if they are not connected to structural characteristics; a crucial hint specifically for the structural engineering community who may be not well familiar with the fundamentals of performance-based approaches.

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Analyses of Widely Used Design Codes for Pile Foundation Using the t-z Method (t-z 방법을 이용한 말뚝기초 설계기준별 비교분석)

  • Park, Sungwon;Misra, Anil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.33-42
    • /
    • 2012
  • The efficiency of the current design methods for computing pile resistances is analyzed using field load-settlement tests results. Twelve load-settlement test data for drilled shafts and bored piles were obtained from the literature. These load-test data were fitted using the t-z method. Subsequently, the ultimate resistances were evaluated based upon the failure criteria from following methods: (1) the Davisson's approach and (2) settlement corresponding to 5% or 10% shaft diameter approach. The ultimate resistances for these drilled shafts and bored piles were also predicted using methods based on the design code from North America (United States, Canada), Europe, and Asia (Japan). The pile resistances determined from field load-settlement tests were compared with those calculated using the design codes. The comparisons show that most design codes predict a conservative resistance for drilled shafts and bored piles. However, in the case of drilled shafts, we find that some of the design codes can over-predict the resistance and, therefore, should be applied cautiously. This research also shows that the t-z method can be successfully used to predict the ultimate resistance and the load transfer mechanism for a single pile.

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

Creep of Plate Anchors Embedded in Bentonite (Bentonite에 근입된 앵커의 Creep 특성)

  • Shin, B.W.;Lee, J.D.;Shin, J.H.;Lee, B.J.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.