• Title/Summary/Keyword: Ullage

Search Result 43, Processing Time 0.027 seconds

Development of Propellant On-Board Feeding System of Pump-fed Liquid Rocket Propulsion System (터보펌프식 발사체 추진기관의 기체공급계 개발)

  • Cho, Nam-Kyung;Jeong, Yong-Gahp;Kwon, Oh-Sung;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.122-126
    • /
    • 2006
  • Two types of pressurization system and low weight feeding piping system are developed. With sub-system tests, ullage pressure control performance was verified for 1 step and 2 step pressurization system and the feeding performance of feeding piping system was also verified. The weight of the feeding piping system is low enough for the application of launch vehicle. In addition, LOX conditioning system is developed for avoiding geysering and LOX temperature rise. Integrated performance was verified through integrated on-board feeding system performance tests.

  • PDF

A Study of Transitional Performance with Change of Inlet Pressure in Liquid Propellant Rocket Engine (액체로켓엔진에서 입구압 변화에 따른 엔진 성능 변화 고찰)

  • Moon, Yoon-Wan;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.103-106
    • /
    • 2008
  • In this work it was studied that the effect on sub-component of engine considering change of engine inlet pressure caused by variable acceleration during flight of launcher. Also the transitional performance was predicted according to variable acceleration. Engine inlet pressure was defined as summation of propellant head in tank, ullage pressure and pressure difference of line, etc. Therefore consumption of propellant and acceleration of launcher led to change of engine inlet pressure, which affected on discharge pressure of pumps. This effect changed mass flow rate of gas generator and main combustor hence it was observed that engine performance was changed definitely.

  • PDF

Heating Apparatus Development for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발)

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.363-367
    • /
    • 2009
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

  • PDF

Heating Apparatus Development and Tests for Cryogenic Gaseous Helium (극저온 헬륨가스 가열장치 개발 및 시험)

  • Chung, Yong-Gahp;Cho, Nam-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-68
    • /
    • 2011
  • For the liquid rocket propulsion system using liquid oxygen as oxidizer, helium for pressurizing LOX is usually stored in the LOX tank with cryogenic temperature. For that kind of pressurizing system, cryogenic helium is discharged from the immerged pressurant cylinder and passes through the heat exchanger downstream of gas generator. During the process, helium pressurant is heated from cryogenic temperature to high one and supplied to the ullage of propellant tank. To develop the pressurizing system, a cryogenic heating apparatus is needed to simulate the heat exchanger. In this paper, the cryogenic heating apparatus for development of the pressurization system is presented along with its heating test results with cryogenic helium.

Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel (극저온 저장용기의 내부압력 거동에 대한 비정상해석)

  • 강권호;김길정;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Self-pressurization of cylindrical container of cryogen is numerically analyzed. The container is axi-symmetric and heated from side wall with constant heat flux. Natural convection by external heat flux is studied numerically using finite difference method. Oxygen, nytrogen and hydrogen are working fluids in this paper. Liquid is considered incompressible fluid and vapor is assumed to behave as gas meeting with virial equation of gas. The Second virial coefficients of gas are obtained from Lennard-jones model. The important variables which have effects on self-pressurization are external heat flux, heat capacity of wall and initial ullage in container. The most important variable of them is external heat flux. The pressure rise calculated from the virial gas model is slightly different from that calculated using Ideal gas model for oxygen.

  • PDF

Liquid Oxygen in Feeding Line during Propellant Filling and Holding (산화제 충진 및 대기 과정의 추진제 공급배관 내부 현상)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Lee, Joong-Youp
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.34-37
    • /
    • 2007
  • Propellant filling and holding test was carried out using liquid oxygen as a working fluid. The feeding line system has a filter at propellant tank outlet. Vaporization of liquid oxygen during holding after completion of filling and effect of vaporization to recirculation performance in this system was observed. Filling rate and pressure of tank ullage had the effect on state of liquid oxygen in feeding line. There was no geysering in feeding line during holding because of the position of filter.

  • PDF

Performance Test and Calculation of Recirculation Line in Propellant Feeding System (기체공급계 재순환배관의 성능시험 및 계산)

  • Kwon, Oh-Sung;Cho, Nam-Kyung;Chung, Yong-Gahp;Han, Sang-Yeop;Kim, Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2007
  • The performance test of recirculation line in propellant feeding system was carried out. Liquid oxygen was used as cryogenic propellant and helium was used as recirculation promotion gas. Tests were done in cases at atmospheric pressure and at pressure of 4 barg in the ullage space of propellant tank. Liquid oxygen recirculation flowrate with helium injection flowrate and temperature distribution along the line were measured. There was appropriate helium injection flowrate for gas-lift recirculation system. Test data were used to make calculation program by test data correlation method. In this paper the procedure of calculation was presented and the results were compared to test data.

Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas (극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I))

  • Chung Yonggahp;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. In this study liquid nitrogen was used instead of liquid oxygen as a simulant. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test facility).

Experimental research of Pressure-Volume-Temperature mass gauging method using instantaneous analysis under cryogenic homogeneous condition (순간 해석 기법을 이용한 PVT 잔량 측정법의 극저온 균일 온도 조건에서의 실험적 연구)

  • Seo, Man-Su;Jeong, Sang-Kwon;Jung, Young-Suk;Ku, Dong-Hun;Ji, Dong-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • In the extreme conditions of launch vehicle in a space, such as cryogenic temperature and low-gravity environment, the mass gauging of remaining propellants becomes a difficult problem. Pressure-volume-temperature (PVT) method is one of the attractive mass gauging methods under low-gravity due to its simplicity and reliability. PVT gauging experiment with various mass flow rates of helium injection is carried out with the experimental apparatus creating cryogenic homogeneous condition as the condition of low-gravity. Experimental results are analyzed by a novel PVT gauging analysis method which considers all instantaneous changes of pressure and temperature in the ullage volume with small time intervals. It is observed that the gauging error from the novel PVT gauging analysis is -0.11% with 2 slpm mass flow rate of helium injection.

Verification of Required Pressurant Mass Prediction Program for Propellant Tank through Flight Test Data (비행시험 데이터를 통한 추진제탱크 가압가스 요구량 예측 프로그램 검증)

  • Kwon, Oh-Sung;Han, Sang-Yeop;Cho, In-Hyun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.723-725
    • /
    • 2010
  • Calculation program to predict required pressurant mass for propellant tank was verified through flight test data. This program was already developed and verified through ground test data, but to increase reliability of program, it was compared with flight test data of KSR-III launched in 2002. Because pressurant temperature incoming to propellant tank was not measured in flight test, that was assumed in calculation program. Required pressurant mass and inside temperature of oxygen tank dome was compared. Validation of calculation program was verified by showing required pressurant mass accuracy of 6%.

  • PDF