• Title/Summary/Keyword: UWB-OFDM

Search Result 103, Processing Time 0.023 seconds

Improved Soft-Decision Technique with Channel State Information in MB-OFDM System with DCM (DCM을 사용하는 MB-OFDM 시스템에서 채널 정보를 이용한 향상된 연판정 복조 기법)

  • Koo, Bon-Wook;Kang, Byung-Su;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.467-474
    • /
    • 2007
  • MB-OFDM (Multiband-orthogonal frequency division multiplexing) UWB (ultra wide band) system uses DCM (dual carrier modulation) scheme to achieve high-data rate transmission. The basic idea of DCM is that to transmit the 4 bits more reliably two 16-QAM (quadrature amplitude modulation) symbols are used and the two 16-QAM sysmbols are allocated to each subcarrier of OFDM with maximum-distance. In the case of using the DCM, if one 16-QAM symbol is broken by deep fadding channel, a receiver can detect the transmitted signal by using another 16-QAM symbol. In the conventional ML(maximum likelihood) decision scheme, since the receiver does not use the CSI (channel state information), loss in diversity can not be reduced. In this paper, we propose improved soft-decision scheme with CSI for higher performance of MB-OFDM UWB systemn.

A Study on the Design of FFT Architecture for Ultra-Wide Band OFDM Communication System (UWB OFDM 통신 시스템 용 FFT(Fast Fourier Transform) 설계에 관한 연구)

  • Park Kye-Wan;Yoon Sang-hun;Chong Jong-Wha
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.309-312
    • /
    • 2004
  • This paper proposes the architecture of UWB OFDM communication system. More high data rate is requested in the 128-point FFT/IFFT of the UWB OFDM communication system than the conventional communication systems. So, the proposed architecture uses pipeline and parallel architecture. For a highly efficient architecture, the optimal clipping power and the input quantization bits are found in simulation. The hardware complexity of the proposed architecture is presented is consideration of Adder, Register and Complex Multiplier.

  • PDF

Frequency Offset Estimation Technique for MB-OFDM Based UWB Systems (다중대역 직교 주파수 분할 다중 (MB-OFDM) 기반 초광대역(UWB) 시스템을 위한 주파수 오프셋 추정 기법)

  • Hwang, Hu-Mor;Rehman, Razi Ur
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.648-653
    • /
    • 2011
  • We propose a new frequency offset estimation technique for multiband orthogonal frequency modulation (MB-OFDM) based ultra wideband (UWB) systems. The proposed frequency offset estimation technique is related to the scheme of Schmidl for channel model 1 (4-1Om NLOS, rms. delay =14.3ns.) using more than two symbols and with alternate symbols. Variance of frequency offset estimate obtained from the proposed frequency offset estimation technique approaches very nearing to Cramer Rao Lower Bound (CRLB) in an AWGN channel. BER performance of the proposed technique is also presented.

A Initial Channel Estimation Method Based on Extensive Preamble Utilization in MB-OFDM UWB System (프리엠블 확장 사용 기반 MB-OFDM UWB용 채널 추정 방식)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, we propose a method to improve the performance of initial channel estimation (CE) for the multiband-OFDM (MB-OFDM) UWB. The performance of the initial CE can be generally improved as increasing the number of the used preamble symbols. The MB-OFDM specification presents two CE symbols per band in preamble format. The performance of CE estimation with two CE symbols may be satisfied in relatively high sensitivity -77.5 and -72.5 dBm for 200 Mbps and 480 Mbps data rate, respectively, but can not be enough in the degraded 55 Mbps and 110 Mbps sensitivities such as -83.5 and -80.5 dBm, respectively. A method proposed in this paper achieves the performance improvement by extending CE estimation region to packet synchronization (PS) symbols and frame synchronization (FS) symbols including two CE symbols. This can improve the CE performance in the degraded SNR and increase the link-margin by reducing the error rate in physical-layer header. The link-margin improvement obtained by the proposed CE preamble can induce the decrease of error-rate in physical-layer header and increase of communication throughput. Simulation results for the proposed initial method show that the performance is improved by about 0.7 dB at 10-4 bit-error-rate using '4' symbols than initial method using only two CE symbols.

Design and Comparison of the Fast-Hopping Frequency Synthesizers for MB-OFDM UWB Systems (MB-OFDM 방식의 UWB 시스템을 위한 Fast-Hopping 주파수 합성기의 유형별 설계 및 비교)

  • Lee, Jae-Kyoung;Park, Joon-Kyu;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2264-2270
    • /
    • 2006
  • This paper describes fast-hewing frequency synthesizers for multi-band OFDM(MB-OFDM) ultra-wide band(UWB) systems. Three different structures in generating 3 center frequencies(3432MHz, 3960MHz, 4488MHz) are designed and compared. The first structure generates 3 center frequencies using only one PLL operating at 4224MHz, and the second uses three PLLs operating at corresponding center frequencies. The proposed third structure employes two PLLs operating at 3960MHz and 528MHz. Simulation results using 0.18um RF CMOS process parameters show that the third structure exhibits boner characteristics in spur, area and current consumption than the other structures. The band switching time of the proposed synthesizer is less than 1.In and the spur is less than -36dBc. The synthesizer consumes 22mA from a 1.8V supply.

MB-OFDM UWB modem SoC design (MB-OFDM 방식 UWB 모뎀의 SoC칩 설계)

  • Kim, Do-Hoon;Lee, Hyeon-Seok;Cho, Jin-Woong;Seo, Kyeung-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.806-813
    • /
    • 2009
  • This paper presents a modem chip design for high-speed wireless communications. Among the high-speed communication technologies, we design the UWB (Ultra-Wideband) modem SoC (System-on-Chip) Chip based on a MB-OFDM scheme which uses wide frequency band and gives low frequency interference to other communication services. The baseband system of the modem SoC chip is designed according to the standard document published by WiMedia. The SoC chip consists of FFT/IFFT (Fast Fourier Transform/Inverse Fast Fourier Transform), transmitter, receiver, symbol synchronizer, frequency offset estimator, Viterbi decoder, and other receiving parts. The chip is designed using 90nm CMOS (Complementary Metal-Oxide-Semiconductor) procedure. The chip size is about 5mm x 5mm and was fab-out in July 20th, 2009.

A 14-band MB-OFDM UWB CMOS LO Generator (CMOS 공정을 이용한 14개 LO 신호를 발생시키는 MB-OFDM UWB용 LO 생성 회로 블록 설계)

  • Seo, Yong-Ho;Shin, Sang-Woon;Kim, Chang-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.65-71
    • /
    • 2010
  • This paper presents a 14-band LO generator architecture for MB-OFDM UWB systems using 3.1 GHz~10.6 GHz frequency band. The proposed LO generator architecture has been consisted of only one PLL and the fewest nonlinear components to generate 14 LO signals with high purity while consuming low dc power consumption. In addition, major spurious generated from the LO generator have been located in the out of UWB band. The proposed LO generator has been implemented in a $0.13-{\mu}m$ CMOS technology and consumes a dc power consumption of 93~103 mW from a 1.5 V supply. The simulation results show an in-band spurious suppression ratio of more than 41 dBc and a band-switching time of below 3 nsec.

Combined Time Synchronization And Channel Estimation For MB-OFDM UWB Systems

  • Kareem, Aymen M.;El-Saleh, Ayman A.;Othman, Masuri
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1792-1801
    • /
    • 2012
  • Symbol timing error amounts to a major degradation in the system performance. Conventionally, timing error is estimated by predefined preamble on both transmitter and receiver. The maximum of the correlation result is considered the start of the OFDM symbol. Problem arises when the prime path is not the strongest one. In this paper, we propose a new combined time and channel estimation method for multi-band OFDM ultra wide-band (MB-OFDM UWB) systems. It is assumed that a coarse timing has been obtained at a stage before the proposed scheme. Based on the coarse timing, search interval is set (or time candidates). Exploiting channel statistics that are assumed to be known by the receiver, we derive a maximum a posteriori estimate (MAP) of the channel impulse response. Based on this estimate, we discern for the timing error. Timing estimation performance is compared with the least squares (LS) channel estimate in terms of mean squared error (MSE). It is shown that the proposed timing scheme is lower in MSE than the LS method.