• Title/Summary/Keyword: UWB CMOS LNA

Search Result 23, Processing Time 0.021 seconds

A 3.1 to 5 GHz CMOS Transceiver for DS-UWB Systems

  • Park, Bong-Hyuk;Lee, Kyung-Ai;Hong, Song-Cheol;Choi, Sang-Sung
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.421-429
    • /
    • 2007
  • This paper presents a direct-conversion CMOS transceiver for fully digital DS-UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase-locked loop (PLL), and a voltage controlled oscillator (VCO). A single-ended-to-differential converter is implemented in the down-conversion mixer and a differential-to-single-ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 $mm^2$ die using standard 0.18 ${\mu}m$ CMOS technology and a 64-pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low-power, and high-speed wireless personal area network.

  • PDF

A Design of Ultra Wide Band Single-to-Differential Gain Controlled Low Noise Amplifier Using 0.18 um CMOS (0.18 um CMOS 공정을 이용한 UWB 단일 입력-차동 출력 이득 제어 저잡음 증폭기 설계)

  • Jeong, Moo-Il;Choi, Yong-Yeol;Lee, Chang-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.358-365
    • /
    • 2008
  • A differential-gain-controlled LNA is designed and implemented in 0.18 um CMOS technology for $3.1{\sim}4.8GHz$ UWB system. In high gain mode, measurements show a differential power gain of $14.1{\sim}15.8dB,\;13.3{\sim}15dB$, respectably, an input return loss higher then 10dB, an input IP3 of -19.3 dBm, a noise figure of $4.85{\sim}5.09dB$, while consuming only 19.8 mW of power from a 1.8V DC supply. In low gain mode, measurements show a differential power gain of $-6.1{\sim}-4.2dB,\;-7.6{\sim}-5.6dB$, respectably, an input return loss higher then 10dB, an input IP3 of -1.45 dBm, a noise figure of $8.8{\sim}10.3dB$, while consuming only 5.4mW of power from a 1.8V DC supply.

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.