• Title/Summary/Keyword: UWB(ultra wideband) antenna

Search Result 102, Processing Time 0.052 seconds

Design of a U-Type Planar UWB Antenna Composed of Monopole Pair (모노폴 쌍으로 구성된 U자형 평면 UWB 안테나 설계)

  • Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Kim, Cheol-Bok;Kim, Jae-Hoon;Park, Seung-Bae;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.60-66
    • /
    • 2008
  • In this paper, the CPW-fed Ultra-wideband antenna is designed and fabricated for UWB communications. To achieve ultra-wide bandwidth of the antenna, we propose the mutual coupling of two planar monopole antennas. The mutual coupling of monopole pair of the proposed antenna is optimized by adjusting the parameters, the widths of the planar monopoles and the space between two monopoles. Two UWB antennas with different horizontal sections of the CPW-fed monopole antenna are fabricated and measured to examine the mutual coupling effects on the monopole pair antenna. The measured result show that two antennas are satisfied with UWB communication band(3.1$\sim$10.6Ghz).

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • 차상진;이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.125-130
    • /
    • 2004
  • Various antennas have been developed to be used for UWB systems, However, Simultaneously meet omni-directional and low-VSWR requirements, essential for some applications such as UWB channel sounding. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover m frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. Antenna radiation pattern is omnidirectional at 3.5GHz - 10GHz. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The proposed antenna easy to construct UWB system.

Ultra-Wideband Antenna Having a Frequency Band Notch Characteristic (주파수 대역 저지 특성을 갖는 초광대역 안테나)

  • Choi Woo-Young;Jung Ji-Hak;Chung Kyung-Ho;Choi Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.199-203
    • /
    • 2005
  • In this paper, a novel compact and frequency band-notch antenna for Ultra-Wideband(UWB) applications is proposed. The designed antenna not only shows good impedance bandwidth for ultra-wideband but has band notch characteristic for the frequency band of $5.15\~5.825\;GHz$ limited by IEEE 802.1la and HIPERLAN/2. To achieve both properties of wide band and band notch, the techniques of a concaved ground plane and inserted U-shaped thin slot into planar radiator are used respectively. A manufactured antenna satisfied VSWR<2 for the frequency band of $2.95\~11.7\GHz$ except the limited band of $4.92\~5.866\;GHz$.

A Design and Manufacture of Modified Rhombus Slot UWB antenna with Fork-shaped-Fed (포크 모양의 급전 구조를 갖는 변형된 마름모 슬롯 UWB 안테나 설계 및 제작)

  • Kim, Jong-Hwa;Kim, Gi-Rae;Yoon, Joong-Han
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.630-632
    • /
    • 2016
  • In this paper, we propose a modified rhombus slot UWB(Ultra Wide Band) antenna with fork-shaped feeding structure. The proposed modified rhombus slot structure is eliminated upper and lower part of the basic rhombus slot shape to get ultra-wideband characteristics for UWB communication. Also, feeding structure is used to fork-shaped structure to get ultra-wideband characteristics. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $34mm(W1){\times}34mm(L1){\times}1mm(t)$, and its slot antenna size is $30mm(W2){\times}16.75mm(L3+L4)$. After the optimized process, the proposed antenna is fabricated and measured. Measured result. fabricated antenna satisfied -10 dB impedance bandwidth in UWB frequency band (3.1 ~ 10.6 GHz ). And measured results of gain and radiation patterns characteristics displayed determined for operating bands.

  • PDF

Self-Complementary Spiral Antenna Design Using a Ultra-Wideband Microstrip-to-CPS Balun (초광대역 마이크로스트립-CPS 발룬을 이용한 Self-Complementary 스파이럴 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • A design and its experimental result of a wideband self-complementary spiral antenna for UWB USPR(Ultrashort-Pulse Radar) system applications is presented. By utilizing the planar-type ultra-wideband microstrip-to-CPS balun, ultra-wideband characteristics of the inherent spiral antenna are retrieved. Also, the design procedure of the spiral antenna is simplified by performing simple impedance matching between separately designed balun and antenna. The proposed spiral antenna is equiangular self-complementary spiral antenna. The implemented antenna demonstrates widebaad performance for frequency ranges from 2.9 to 12 GHz with the relatively flat antenna gain of 2.7 to 5.3 dB and broad beamwidth of more than $70^{\circ}$. From these result, the possibility of a spiral antenna using a ultra-wideband microstrip-CPS balun is verified.

Multiband-Notched UWB Antenna Using Folded Slots in the Feeding Structure

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2014
  • An ultra-wideband (UWB) circular monopole antenna with a multiband-notched characteristic is proposed. The multiband-notched filter consists of three different sized folded slots, which are distinctly assigned for the notched band at the 3.5-GHz WiMAX, 5-GHz WLAN, and 8-GHz ITU bands. The proposed antenna results in a measured ${\mid}S_{11}{\mid}$ < -10 dB, which completely covers the UWB band (3.1 10.6 GHz) with three notched bands at 3.5, 5.5, and 8.0 GHz. The antenna yields an omnidirectional radiation pattern and high radiation efficiency.

The Design of the Ultra-Wideband Slot Antenna by Using a Semi-Circular Extension (반원 확장을 이용한 초광대역 슬롯 안테나 설계)

  • Lee Jung-Nam;Lee Hyo-Kyoung;Jang Hwa-Yeol;Park Jong-Kweon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.941-948
    • /
    • 2005
  • In this paper, we have proposed a Ultra-Wideband slot notch antenna by using a semi-circular extension. The proposed antenna cover the entire UWB band(3.1${\~}$10.6 GHz) and notch out the IEEE 802.1la frequency band(5.15${\~}$5.825 GHz) by inserting a $\lambda$/4 length slot into the patch. A prototype antenna was fabricated on FR-4( ${\epsilon}_r$ =4.4, substrate thickness=0.8 mm) and measured for VSWR characteristics. The measured notched frequency variations versus frequency for different slot length. The path loss and group delay were measured. The proposed antenna also show a good gain flatness(1.9 dBi) except the IEEE 802.1la frequency band.

Optimal Design of a UWB-MIMO Antenna with a Wide Band Isolation using ES Algorithm (진화 전략 기법을 이용한 광대역 격리형 UWB-MIMO 안테나 최적설계)

  • Han, Jun-Hee;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1661-1666
    • /
    • 2014
  • In this paper, a compact planar ultra wideband (UWB, 3.1~10.6GHz) multiple-input multiple-output (MIMO) antenna is proposed. This antenna consists of two monopole planar UWB antennas and T-shaped stub decoupling between two antennas. The T-shaped stub improve the isolation characteristic at the wide band. The evolution strategy(ES) algorithm is employed to optimized design. As a result, optimized antenna has a return loss less than -10dB and the isolation less than -15dB from 3.1GHz to 10.6GHz. During the optimization process, the antenna gain is enhanced at lower band and the envelope correlation coefficient(ECC) is lower than 0.003.

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • Cha, Sang-Jin;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

A planar half-disk UWB antennas having a notch function (노치 기능을 가지는 반원 형태의 UWB 안테나)

  • Lee, Hyo-K.;Jang, Mi-H.;Lee, Yoon-J.;Park, Jong-K.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.205-210
    • /
    • 2005
  • In this paper, a planar half-circle shape ultra-wideband(UWB) antenna fed by CPW is designed, fabricated and measured for UWB communications. Within the UWB band(3.1 GHz $\sim$ 10.6 GHz), 5.15 GHz $\sim$ 5.825 GHz frequency band is used by IEEE 802.lla WLAN applications. It may be necessary to notch out this band to avoid interference with IEEE 802.lla WLAN. Therefore, we have proposed three kinds of UWB antennas having a notch function, such as a rectangular slot, a hat-shaped slot, a circle-shaped slot. The notch frequency of the proposed antenna can be adjusted by controlling the slot length or slot width. From the measured results, the proposed antennas show a good gain flatness except the IEEE 802.lla WLAN frequency band and have a reasonable agreement with simulated results.

  • PDF