DOI QR코드

DOI QR Code

Self-Complementary Spiral Antenna Design Using a Ultra-Wideband Microstrip-to-CPS Balun

초광대역 마이크로스트립-CPS 발룬을 이용한 Self-Complementary 스파이럴 안테나 설계

  • Woo, Dong-Sik (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Young-Gon (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Cho, Young-Ki (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kim, Kang-Wook (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 우동식 (경북대학교 전자전기컴퓨터학부) ;
  • 김영곤 (경북대학교 전자전기컴퓨터학부) ;
  • 조영기 (경북대학교 전자전기컴퓨터학부) ;
  • 김강욱 (경북대학교 전자전기컴퓨터학부)
  • Published : 2009.02.28

Abstract

A design and its experimental result of a wideband self-complementary spiral antenna for UWB USPR(Ultrashort-Pulse Radar) system applications is presented. By utilizing the planar-type ultra-wideband microstrip-to-CPS balun, ultra-wideband characteristics of the inherent spiral antenna are retrieved. Also, the design procedure of the spiral antenna is simplified by performing simple impedance matching between separately designed balun and antenna. The proposed spiral antenna is equiangular self-complementary spiral antenna. The implemented antenna demonstrates widebaad performance for frequency ranges from 2.9 to 12 GHz with the relatively flat antenna gain of 2.7 to 5.3 dB and broad beamwidth of more than $70^{\circ}$. From these result, the possibility of a spiral antenna using a ultra-wideband microstrip-CPS balun is verified.

UWB USPR 시스템 응용 초광대역 마이크로스트립-CPS(Coplanar Stripline) 발룬을 이용한 self-complementary 스파이럴 안테나의 설계와 실험적 결과를 제시하였다. 초광대역 특성을 갖는 평면형 마이크로스트립-CPS 발룬을 적용하여 스파이럴 안테나 고유의 초광대역 특성을 유지하게 하였고, 각각 설계된 안테나와 발룬을 임피던스 정합의 방법을 이용하여 연결함으로 간단한 안테나 설계 과정을 보였다. 설계된 스파이럴 안테나는 등각 형태의 self-complementary 스파이럴 안테나이다. 제작된 안테나는 2.9 GHz에서 12 GHz의 넓은 주파수 특성을 가지며, 2.7에서 5.3 dB의 비교적 평탄한 이득과 $70^{\circ}$ 이상의 빔 폭을 가졌다. 이 결과를 통해 초광대역 마이크로스트립-CPS 발룬의 스파이럴 안테나의 적용 가능성을 검증하였다.

Keywords

References

  1. S. Takaichi, A. Mase, Y. Kogi, and K. W. Kim, 'Application of ultrashort-pulse radar to non-destructive inspection', IEEE Int. Conf. Communication Tech., pp. 316-318, Nov. 2008
  2. E. C. Fear, S. C. Hagness, P. M. Meaney, M. Okoiewski, and M. A. Stuchly, 'Enhancing breast tumor detection with near-field imaging', IEEE Microw. Magazine, vol. 3, no. c, pp. 48-56, Mar. 2002 https://doi.org/10.1109/6668.990683
  3. S. C. Hagness, A. Taflove, and J. E. Bridges,'Three-dimensional FDTD analysis of a pulesd microwave confocal system for breast cancer detection: design of an antenna-array element', IEEE Trans. Ant. Propag., vol. 47, no. 5, pp. 783-791, May 1999 https://doi.org/10.1109/8.774131
  4. J. D. Dyson, 'The equiangular spiral antenna', IRE Trans. Antennas Propagat., vol. 7, pp. 181-187, Apr. 1959 https://doi.org/10.1109/TAP.1959.1144653
  5. Johnson J. H. Wang, Victor K. Tripp, 'Design of multioctave spiral-mode microstrip antennas', IEEE Trans. Antennas Propagat., vol. 39, no. 3, pp. 332- 335, Mar. 1991 https://doi.org/10.1109/8.76330
  6. J. Thaysen, K. B. Jakobsen, and Jorgen Appel- Hansen, 'A logarithmic spiral antenna for 0.4 to 3.8 GHz', Applied Microwave & Wireless, vol. 13, no. 1, pp. 32-45, Feb. 2000
  7. Y. G. Kim, D. S. Woo, K. W. Kim, and Y. K. Cho, 'A new ultra-wideband microstrip-to-CPS transition', IEEE Int. Symp. Microwave, pp. 1563-1566, Jun. 2007