• Title/Summary/Keyword: UV-radiation

Search Result 673, Processing Time 0.14 seconds

UV-B-Induced Changes in Carbohydrate Content and Antioxidant Activity in Rice Seedling

  • Sung Jwa-Kyung;Lee Su-Yeon;Park So-Hyun;Jang Byoung-Choon;Lee Sang-Min;Lee Yong-Hwan;Choi Du-Hoi;Song Beom-Heon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.84-90
    • /
    • 2005
  • The effects of UV-B radiation on the seedling growth, carbohydrate metabolism and antioxidants activities of rice (Oryza sativa L.) were investigated under environmentally controlled chamber. Supplementary UV­B radiation reduced dry matter as well as leaf area, there­fore, relative growth rates (RGR) of seedlings were decreased by up to half compared to control. Photosynthetic products such as soluble sugars and starch were rapidly and significantly reduced by within 1 day of enhanced UV-B radiation due to the inhibition and degradation of photosynthetic processes and thylakoid membrane integrity. In our study, nonstructural carbohydrate levels were proved to be a main indicator on UV-B­induced stress. The behavior of SOD, CAT, APX and POD activities was monitored in the leaves of rice seedlings subjected to UV-B radiation. Under UV-B treatments, SOD activity was initially increased, whereas CAT and POD activities were slowly and slightly increased. However, APX activity showed no presumable results with an increase of UV-B dose. In leaves of rice seedlings, supplementary UV-B radiation caused an increase in free putrescine and spermidine, however spermine remained unaltered, although 24-hrs UV-B treatment slightly increased. This result presumes that an excess UV-B dose may induce ethylene biosynthesis (senescence) rather than polyamine biosynthesis (defense).

UV-B Effects on Growth and Nitrate Dynamics in Antarctic Marine Diatoms Chaetoceros neogracile and Stellarima microtrias (중파 자외선에 노출된 남극 규조 Chaetoceros neogracile와 Stellarima microtrias의 성장과 질산염 흡수량의 변화)

  • Gang, Jae Sin;Gang, Seong Ho;Lee, Yun Ho;Sim, Jeong Hui;Lee, Sang Hun
    • ALGAE
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Two isolated Antarctic marine diatoms, Chaetoceros neogracile VanLandingham and Stellarima microtrias (Ehrenberg) Hasle and Sims were examined to show changes of growth and uptake rate of nitrate due to UV-B irradiance. Chlorophyll (chl) a concentration was regarded as the growth index of diatom. The diatoms were treated with UV-B radiation and cultured for 4 days under cool-white fluorescent light without UV-B radiation. Two levels of UV-B exposures were applies: 1 and 6 W $m^{-2}$. Durations of UV-B treatment were 20, 40 and 60 minutes under 6 W $m^{-2}$ and 1, 2, 3, 4 and 5 hrs under 1 W $m^{-2}$. The control groups were cultured at the same time without UV-B radiation. The growth rates of two diatoms decreased under 1 and 6 W $m^{-2}$ UV-B irradiances than that of control group. After 4 days, chl a concentrations of C. neogracile were increased more than 4 times from 133 μgo$l^{-1}$ to 632 μgo$l^{-1}$ in control group. However, the concentration of experimental groups under 1 W $m^{-2}$ UV-B were only increased from 139 μgo$l^{-1}$ to 421 μgo$l^{-1}$ during one hour and the chl a concentrations were decreased from 144 μgo$l^{-1}$ to 108 μgo$l^{-1}$ during five hour. Growth of diatom dramatically more decreased under 6 W $m^{-2}$ UV-B than 1 W $m^{-2}$ UV-B. The chl a concentration of experimental groups under 6 W $m^{-2}$ UV-B for one hour was only increased from 111 μgo$l^{-1}$ to 122 μgo$l^{-1}$. In the case of S. microtrias showed also similar pattern to C. neogracile by UV-B radiation. The uptake rates of nitrate by the two strains were decreased abruptly under 6 W $m^{-2}$ UV-B irradiances. When two strains were treated under 1 and 6 W $m^{-2}$ UV-B during one hour, the strains were only continued growth and uptake of nitrate under 1 W $m^{-2}$ UV-B. This experimental evidence shows that exposure to UV-B radiation especially to high irradiance of UV-B decreases diatom survival and causes lower decrease of nutrient concentrations by microalgae in Antarctic water. Furthermore, evidence suggests that microalgal communities confined to near-surface waters in Antarctica will be harmed by increased UV-B radiation, thereby altering the dynamics of Antarctic marine ecosystems.

Effect of UV-B Radiation on the Leaf Growth of Rice Seedling (벼 유묘의 엽생장에 대한 자외선의 효과)

  • Sung, Jwa-Kyung;Lee, Su-Yeon;Kim, Tae-Wan;Hwang, Seon-Woong;Park, Moon-Hee;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2004
  • Rice seedlings were used to examine the effect of UV-B radiation on leaf elongation and development. Leaf elongation in both rice seedlings showed differently depending on each leaf age. UV-B radiation strongly reduced leaf elongation, 58-66% compared to without UV-B radiation, of two rice seedlings, therefore, those seedlings could not grow further. Both control and plants grown under UV-B regime showed a diurnial fluctuation in growth rate, showing maximum growth during the light period and minimum during the dark period. Leaf growth at the third leaf stage by UV-B treatment was considerably reduced by 1.7-fold than the control whereas at the fifth leaf stage was not changed. Hydrogen peroxide was considerably increased in the second phase of UV-B-induced response as catalase and peroxidase are deactivated with an increase of UV-B radiation.

Catalytic Ozonation of Phenol (페놀의 촉매오존산화 반응에 관한 연구)

  • Lee, Cheal-Gyu;Woo, Jeong-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.731-738
    • /
    • 2011
  • In this study AOPs of $O_3/UV$ radiation, $O_3/Mg(OH)_2/UV$ radiation and $O_3/MgO/UV$ radiation system for phenol treatment in aqueous solution was performed in a laboratory scale circulating batch reacter. Flow rate of ozone 1.0 L/min, ozone concentrations $150{\pm}10mg/L$ was maintained constantly at the above-mentioned oxidation processes. During the oxidation processes the $COD_{Cr}$ and TOC was measured in the composition. The pseudo first-order rate constants of the processes was $5.12{\times}10^{-5}$, $1.19{\times}10^{-4}$ and $1.79{\times}10^{-4}sec^{-1}$, and the activation energy was 3.03, 1.79 and $2.32kcal{\cdot}mol^{-1}$ at $20^{\circ}C$, respectively. It was found that both $Mg(OH)_2$ and MgO had remarkable accelerations on degradation of phenol and removal of COD in water. On this basis, $O_3/MgO/UV$ system is an effective and feasible routes for catalytic ozonation of phenol in water.

Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition

  • Li, Gang;Gao, Kunshan
    • ALGAE
    • /
    • v.29 no.1
    • /
    • pp.27-34
    • /
    • 2014
  • Availability of nutrients is known to influence marine primary production; and it is of general interest to see how nutrient limitation mediates phytoplankton responses to solar ultraviolet radiation (UVR, 280-400 nm). The red tide diatom Skeletonema costatum was cultured under nitrate (N)-limited and N-replete conditions and exposed to different solar irradiation treatments with or without UV-A (315-400 nm) and UV-B (280-315 nm) radiation. Its photochemical quantum yield decreased by 13.6% in N-limited cells as compared to that in N-replete ones under photosynthetically active radiation (PAR)-alone treatment, and the presence of UV-A or UV-B decreased the yield further by 2.8 and 3.1%, respectively. The non-photochemical quenching (NPQ), when the cells were exposed to stressful light condition, was higher in N-limited than in N-replete grown cells by 180% under PAR alone, by 204% under PAR + UV-A and by 76% under PAR + UV-A + UV-B treatments. Our results indicate that the N limitation exacerbates the UVR effects on the S. costatum photosynthetic performance and stimulate its NPQ.

Photoinduction of UV-absorbing Compounds and Photo-protective Pigment in Phaeocystis pouchetii and Porosira glacialis by UV Exposure (실내 자외선 노출 실험을 통한 극지 식물플랑크톤(Phaeocystis pouchetii, Porosira glacialis)의 자외선 흡수물질 생성 연구)

  • Ha, Sun-Yong;Kang, Sung-Won;Park, Mi-Ok;Kim, Young-Nam;Kang, Sung-Ho;Shin, Kyung-Hoon
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.397-409
    • /
    • 2010
  • Herein, we compared the production rate of UV-absorbing compounds (mycosporine-like amino acids) and carotenoids in two phytoplankton species--Phaeocystis pouchetii and Porosira glacialis--which are the dominant species in Polar Regions under artificial UV radiation conditions. P. pouchetii exposed to UVR and PAR evidenced reductions in the carbon fixation rate, and was not significantly influenced by differing light conditions. However, the concentrations of UV-absorbing compounds and photo-protective pigments of P. pouchetii were increased with increasing exposure time, but P. glacialis maintained constant levels during the UVR exposure experiment. The production rates of MAAs showed a reverse phase between the two phytoplankton species. The carbon fixation rate of P. pouchetii cells was inhibited by exposure to UV radiation, but the production rates of MAAs in P. pouchetii were increased under UV radiation exposure. The carbon fixation rate and production rate of MAAs in P. glacialis were simultaneously inhibited under UV radiation exposure conditions. These results provide us with new information regarding the processes involved in the production of UV-absorbing compounds and photoprotective pigments in two phytoplankton species.

Morphological Alteration of Cell Organelles Affected by UV-B Radiation in Rice Leaf Tissues (자외선에 의한 벼 엽 세포 소기관의 형태적 변화)

  • Sung, Jwa-Kyung;Song, Beom-Heon;Kim, Hong-Sig;Lee, Chul-Won;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.31-35
    • /
    • 2004
  • This experiment was performed to observe morphological changes in rice leaf tissue caused by a successive UV-B radiation. Effect of UV-B radiation on the structural alteration of tissue was not visually found, however, Photosynthate containing phosphate was sharply reduced in proportion with an increase of UV-B radiation. Fundamental components of cuticle layer were being degraded after 6 h of UV-B radiation compared to the control. UV-B-induced mesophyll cell appeared altered because of water stress, the shape of chloroplast appeared to be considerably shrunk and chloroplast thylakoid membranes were severely destructed. Primary cell wall of UV-B-stressed tissue was entirely scattered or disappeared, and the secondary cell wall due to lignin synthesis and deposition resulted in being thickened, almost 2-times, compared with the control.

Effects of Artificial UV-B and Solar Radiation on Four Species of Antarctic Rhodophytes

  • Han, Tae-Jun;Park, Seon-Joo;Lee, Min-Soo;Han, Young-Seok;Kang, Sung-Ho;Chung, Ho-Sung;Lee, Sang-Hoon
    • Ocean and Polar Research
    • /
    • v.23 no.4
    • /
    • pp.389-394
    • /
    • 2001
  • During austral summer 1998 we examined the impacts of artificial UV-B and solar radiation on chlorophyll a content and fresh weight of four species of Antarctic red algae namely, Georgiella confluens, Iridaea cordata, Pantoneura plocamioides and Porphyra endiviifolium. These subject species were taken in consideration of clear demarcations of their vertical distribution and classified as shallow water group (Iridaea and Porphyra) and deep water group (Georgiella and Pantoneura). When irradiated with artificial UV-B at the irradiance of $2.0Wm^{-2}$ the shallow water inhabitants were much more resistant than the algae from deep water the fresh weight of which was reduced by 40-50% relative to control apart from loss of pigmentation. Direct solar radiation was lethal to the deep water group with a sign of complete bleaching whereas the shallow water group did not show any change in the physiological parameters. We were unable to discriminate difference in the algal sensitivity between UV-filtered and UV-transparent treatments since samples tested were either all unaffected or dead. Spectrophotometric measurements of methanolic extracts revealed a strong absorption peak in the UV range in the shallow water group of algae, Iridaea and Porphyra, but not in the deep water counterparts. Species difference in sensitivity to artificial UV-B and solar radiation is discussed in relation to biochemical and morphological characteristics and the role of the radiation in the algal vertical distribution is suggested from ecological perspective.

  • PDF

Physiological and Biochemical Analyses of Rice Sensitivities to UVB Radiation

  • Hidema, Jun;Kumagai, Tadashi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.162-165
    • /
    • 2002
  • Rice is widely cultivated in various regions throughout Asia. Over a five-year period, we investigated the effects of supplemental UVB radiation on the growth and yield of Japanese rice cultivars in the field. The findings of that study indicated that supplemental UVB radiation has inhibitory effects on the growth and grain development. Furthermore, we investigated the sensitivity to UVB radiation of rice cultivars of 5 Asian rice ecotypes, and found that rice cultivars vary widely in UVB sensitivity. The aim of our study is improving UVB resistance in plants by bioengineering or breeding programs. In order to make it, there is need to find the molecular origin of the sensitivity to UVB. Cyclobutane pyrimidine dimer (CPD) is major UV-induced DNA lesions. Plants possess two mechanisms to cope with such DNA damage. The first is the accumulation of UV-absorbing compounds. Our previous data showed that the steady-state CPD levels in leaves of rice grown under chronic radiation in any culture were not so greatly influenced by the increased UV-absorbing compounds content, although there was a significant positive correlation between the CPD levels induced by challenge UVB exposure and the UV-absorbing compounds content. The other is the repair of DNA damage. Photorepair is the major pathway in plants for repairing CPD. We found that the sensitivity to UVB could seriously correlate with the low ability in CPD photorepair in rice plants. These results suggest that photo lyase might be an excellent candidate for restoration by way of selective breeding or engineering in rice.

  • PDF

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.