DOI QR코드

DOI QR Code

Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition

  • Li, Gang (State Key Laboratory of Marine Environmental Science, Xiamen University) ;
  • Gao, Kunshan (State Key Laboratory of Marine Environmental Science, Xiamen University)
  • Received : 2013.09.17
  • Accepted : 2014.02.24
  • Published : 2014.03.15

Abstract

Availability of nutrients is known to influence marine primary production; and it is of general interest to see how nutrient limitation mediates phytoplankton responses to solar ultraviolet radiation (UVR, 280-400 nm). The red tide diatom Skeletonema costatum was cultured under nitrate (N)-limited and N-replete conditions and exposed to different solar irradiation treatments with or without UV-A (315-400 nm) and UV-B (280-315 nm) radiation. Its photochemical quantum yield decreased by 13.6% in N-limited cells as compared to that in N-replete ones under photosynthetically active radiation (PAR)-alone treatment, and the presence of UV-A or UV-B decreased the yield further by 2.8 and 3.1%, respectively. The non-photochemical quenching (NPQ), when the cells were exposed to stressful light condition, was higher in N-limited than in N-replete grown cells by 180% under PAR alone, by 204% under PAR + UV-A and by 76% under PAR + UV-A + UV-B treatments. Our results indicate that the N limitation exacerbates the UVR effects on the S. costatum photosynthetic performance and stimulate its NPQ.

Keywords

References

  1. Agusti, S. & Llabres, M. 2007. Solar radiation-induced mortality of marine pico-phytoplankton in the oligotrophic ocean. Photochem. Photobiol. 83:793-801. https://doi.org/10.1111/j.1751-1097.2007.00144.x
  2. Barufi, J. B., Korbee, N., Oliveira, M. C. & Figueroa, F. L. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. J. Appl. Phycol. 23:457-466. https://doi.org/10.1007/s10811-010-9603-x
  3. Beardall, J., Sobrino, C. & Stojkovic, S. 2009. Interactions between the impacts of ultraviolet radiation, elevated $CO_2$, and nutrient limitation on marine primary producers. Photochem. Photobiol. Sci. 8:1257-1265. https://doi.org/10.1039/b9pp00034h
  4. Beardall, J., Young, E. & Roberts, S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquat. Sci. 63:44-69. https://doi.org/10.1007/PL00001344
  5. Boyd, P. W., Strzepek, R., Fu, F. & Hutchins, D. A. 2010. Environmental control of open-ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55:1353-1376. https://doi.org/10.4319/lo.2010.55.3.1353
  6. Buma, A. G. J., Boelen, P. & Jeffrey, W. H. 2003. UVR-induced DNA damage in aquatic organisms. In Helbling, E. W. & Zagarese, H. (Eds.) UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge, pp. 291-327.
  7. Fujiki, T., Toda, T., Kikuchi, T. & Taguchi, S. 2003. Photoprotective response of xanthophyll pigments during phytoplankton blooms in Sagami Bay, Japan. J. Plankton Res. 25:317-322. https://doi.org/10.1093/plankt/25.3.317
  8. Gao, K., Li, G., Helbling, E. W. & Villafane, V. E. 2007a. Variability of UVR effects on photosynthesis of summer phytoplankton assemblages from a tropical coastal area of the South China Sea. Photochem. Photobiol. 83:802-809. https://doi.org/10.1111/j.1751-1097.2007.00154.x
  9. Gao, K., Wu, Y., Li, G., Wu, H., Villafañe, V. E. & Helbling, E. W. 2007b. Solar UV radiation drives CO2 fixation in marine phytoplankton: a double-edged sword. Plant Physiol. 144:54-59. https://doi.org/10.1104/pp.107.098491
  10. Genty, B., Briantais, J. & Baker, N. R. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol. Biochem. 28:1-10.
  11. Guan, W. & Gao, K. 2008. Light histories influence the impacts of solar ultraviolet radiation on photosynthesis and growth in a marine diatom, Skeletonema costatum. J. Photochem. Photobiol. B Biol. 91:151-156. https://doi.org/10.1016/j.jphotobiol.2008.03.004
  12. Hader, D. -P. 2011. Does enhanced solar UV-B radiation affect marine primary producers in their natural habitats? Photochem. Photobiol. 87:263-266. https://doi.org/10.1111/j.1751-1097.2011.00888.x
  13. Hader, D. -P., Lebert, M., Marangoni, R. & Colombetti, G. 1999. ELDONET- European Light Dosimeter Network hardware and software. J. Photochem. Photobiol. B Biol. 52:51-58. https://doi.org/10.1016/S1011-1344(99)00102-5
  14. Halldal, P. 1967. Ultraviolet action spectra in algology: a review. Photochem. Photobiol. 6:445-460. https://doi.org/10.1111/j.1751-1097.1967.tb08744.x
  15. Harada, H., Vila-Costa, M., Cebrian, J. & Kiene, R. P. 2009. Effects of UV radiation and nitrate limitation on the production of biogenic sulfur compounds by marine phytoplankton. Aquat. Bot. 90:37-42. https://doi.org/10.1016/j.aquabot.2008.05.004
  16. Helbling, E. W., Gao, K., Goncalves, R. J., Wu, H. & Villafane, V. E. 2003. Utilization of solar UV radiation by coastal phytoplankton assemblages off SE China when exposed to fast mixing. Mar. Ecol. Prog. Ser. 259:59-66. https://doi.org/10.3354/meps259059
  17. Kashino, Y., Kudoh, S., Hayashi, Y., Suzuki, Y., Odate, T., Hirawake, T., Satoh, K. & Fukuchi, M. 2002. Strategies of phytoplankton to perform effective photosynthesis in the North Water. Deep-Sea Res. 49:5049-5061.
  18. Kooistra, W. H. C. F., Sarno, D., Balzano, S., Gu, H., Andersen, R. A. & Zingone, A. 2008. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist 159:177-193. https://doi.org/10.1016/j.protis.2007.09.004
  19. Korbee, N., Mata, M. T. & Figueroa, F. L. 2010. Photoprotection mechanisms against ultraviolet radiation in Heterocapsa sp. (Dinophyceae) are influenced by nitrogen availability: mycosporine-like amino acids vs. xanthophyll cycle. Limnol. Oceanogr. 55:899-908. https://doi.org/10.4319/lo.2009.55.2.0899
  20. Lavaud, J., Strzepek, R. F. & Kroth, P. G. 2007. Photoprotection capacity differs among diatoms: possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol. Oceanogr. 52:1188-1194. https://doi.org/10.4319/lo.2007.52.3.1188
  21. Lesser, M. P. 1996. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41:271-283. https://doi.org/10.4319/lo.1996.41.2.0271
  22. Li, G. & Campbell, D. A. 2013. Rising $CO_2$ interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal diatom Thalassiosira pseudonana. PLoS One 8:e55562. https://doi.org/10.1371/journal.pone.0055562
  23. Li, G. & Gao, K. 2013. Cell size-dependent effects of solar UV radiation on primary production in coastal waters of the South China Sea. Estuar. Coast. 36:728-736. https://doi.org/10.1007/s12237-013-9591-6
  24. Li, G., Huang, L., Liu, H., Ke, Z., Lin, Q., Ni, G., Yin, J., Li, K., Song, X., Shen, P. & Tan, Y. 2012. Latitudinal variability (6$^{\circ}$S-20$^{\circ}$N) of early-summer phytoplankton species compositions and size-fractioned productivity from the Java Sea to South China Sea. Mar. Biol. Res. 8:163-171. https://doi.org/10.1080/17451000.2011.615323
  25. Li, G., Wu, Y. & Gao, K. 2009. Effects of typhoon Kaemi on coastal phytoplankton assemblages in the South China Sea, with special reference to the effects of solar UV radiation. J. Geophys. Res. 114:G04029.
  26. Liang, Y., Beardall, J. & Heraud, P. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 82:161-172. https://doi.org/10.1016/j.jphotobiol.2005.11.002
  27. Litchman, E., Neale, P. J. & Banaszak, A. T. 2002. Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates: photoprotection and repair. Limnol. Oceanogr. 47:86-94. https://doi.org/10.4319/lo.2002.47.1.0086
  28. Loebl, M., Cockshutt, A. M., Campbell, D. A. & Finkel, Z. V. 2010. Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi. Limnol. Oceanogr. 55:2150-2160. https://doi.org/10.4319/lo.2010.55.5.2150
  29. Marcoval, M. A., Villafañe, V. E. & Helbling, E. W. 2008. Combined effects of solar ultraviolet radiation and nutrients addition on growth, biomass and taxonomic composition of coastal marine phytoplankton communities of Patagonia. J. Photochem. Photobiol. B Biol. 91:157-166. https://doi.org/10.1016/j.jphotobiol.2008.03.002
  30. Mengelt, C. & Prézelin, B. B. 2005. UVA enhancement of carbon fixation and resilience to UV inhibition in the genus Pseudo-nitzschia may provide a competitive advantage in high UV surface waters. Mar. Ecol. Prog. Ser. 301:81-93. https://doi.org/10.3354/meps301081
  31. Neale, P. J., Bossard, P., Huot, Y. & Sommaruga, R. 2001. Incident and in situ irradiance in Lakes Cadagno and Lucerne: a comparison of methods and models. Aquat. Sci. 63:250-264. https://doi.org/10.1007/s00027-001-8038-5
  32. Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C. & Shi, J. 2004. Physical- biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109:C10005. https://doi.org/10.1029/2004JC002365
  33. Roy, S. 2000. Strategies for the minimisation of UV-induced damage. In de Mora, S. J., Demers, S. & Vemet, M. (Eds.) The Effects of UV Radiation in the Marine Environment. Cambridge University Press, Cambridge, pp. 177-205.
  34. Sobrino, C., Montero, O. & Lubian, L. M. 2004. UV-B radiation increases cell permeability and damages nitrogen incorporation mechanisms in Nannochloropsis gaditana. Aquat. Sci. 66:421-429. https://doi.org/10.1007/s00027-004-0731-8
  35. van de Poll, W. H., van Leeuwe, M. A., Roggeveld, J. & Buma, A. G. J. 2005. Nutrient limitation and high irradiance acclimation reduce PAR and UV-induced viability loss in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). J. Phycol. 41:840-850. https://doi.org/10.1111/j.1529-8817.2005.00105.x
  36. van Kooten, O. & Snel, J. F. H. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147-150. https://doi.org/10.1007/BF00033156
  37. Wang, S., Tang, D., He, F., Fukuyo, Y. & Azanza, R. V. 2008. Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596:79-93. https://doi.org/10.1007/s10750-007-9059-4
  38. Wei, S. F., Hwang, S. -P. L. & Chang, J. 2004. Influence of ultraviolet radiation on the expression of proliferating cell nuclear antigen and DNA polymerase $\alpha$ in Skeletonema costatum (Bacillariophyceae). J. Phycol. 40:655-663. https://doi.org/10.1111/j.1529-8817.2004.03040.x
  39. Wu, H., Gao, K. & Wu, H. 2009. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures. J. Photochem. Photobiol. B Biol. 94:82-86. https://doi.org/10.1016/j.jphotobiol.2008.10.005
  40. Zhang, P., Tang, X., Dong, S., Cai, H., Xiao, H. & Feng, L. 2007. UV-B radiation plays different roles in the competition between Alexandrium tamarense and Skeletonema costatum. Oceanol. Limnol. Sin. 38:187-192 (in Chinese).

Cited by

  1. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms vol.131, pp.1, 2017, https://doi.org/10.1007/s11120-016-0301-7
  2. Short-term interactive effects of ultraviolet radiation, carbon dioxide and nutrient enrichment on phytoplankton in a shallow coastal lagoon vol.51, pp.1, 2017, https://doi.org/10.1007/s10452-016-9601-4
  3. Effects of ultraviolet radiation on marine primary production with reference to satellite remote sensing vol.9, pp.2, 2015, https://doi.org/10.1007/s11707-014-0477-0
  4. Cloning, Expression Analysis and Enzyme Activity Assays of the α-Carbonic Anhydrase Gene from Chlamydomonas sp. ICE-L vol.60, pp.1, 2018, https://doi.org/10.1007/s12033-017-0040-9
  5. Interactive effects of and light on growth rates and RUBISCO content of small and large centric diatoms vol.12, pp.20, 2015, https://doi.org/10.5194/bgd-12-16645-2015
  6. The environmental implication of diatom fossils in the surface sediment of the Changjiang River estuary (CRE) and its adjacent area vol.37, pp.2, 2014, https://doi.org/10.1007/s00343-019-8037-9
  7. Photosynthetic response and DNA mutation of tropical, temperate and polar Chlorella under short-term UVR stress vol.20, pp.1, 2014, https://doi.org/10.1016/j.polar.2018.12.004