DOI QR코드

DOI QR Code

Catalytic Ozonation of Phenol

페놀의 촉매오존산화 반응에 관한 연구

  • Lee, Cheal-Gyu (Department of Environmental Engineering, Chongju University) ;
  • Woo, Jeong-Hun (Department of Environmental Engineering, Chongju University)
  • Received : 2011.08.23
  • Accepted : 2011.10.26
  • Published : 2011.10.31

Abstract

In this study AOPs of $O_3/UV$ radiation, $O_3/Mg(OH)_2/UV$ radiation and $O_3/MgO/UV$ radiation system for phenol treatment in aqueous solution was performed in a laboratory scale circulating batch reacter. Flow rate of ozone 1.0 L/min, ozone concentrations $150{\pm}10mg/L$ was maintained constantly at the above-mentioned oxidation processes. During the oxidation processes the $COD_{Cr}$ and TOC was measured in the composition. The pseudo first-order rate constants of the processes was $5.12{\times}10^{-5}$, $1.19{\times}10^{-4}$ and $1.79{\times}10^{-4}sec^{-1}$, and the activation energy was 3.03, 1.79 and $2.32kcal{\cdot}mol^{-1}$ at $20^{\circ}C$, respectively. It was found that both $Mg(OH)_2$ and MgO had remarkable accelerations on degradation of phenol and removal of COD in water. On this basis, $O_3/MgO/UV$ system is an effective and feasible routes for catalytic ozonation of phenol in water.

본 논문에서는 실험실적 규모의 순환형 회분식 반응기에서 수용액상 phenol을 처리하기 위해 $O_3/UV$ radiation, $O_3/Mg(OH)_2/UV$ radiation 그리고 $O_3/MgO/UV$ radiation 고급산화공정(AOPs)에 대한 연구를 수행하였다. 오존의 유량은 1.0 L/min, 오존 농도를 $150{\pm}10mg/L$로 일정하게 유지 하였으며, 산화반응에 나타나는 $COD_{Cr}$ 및 TOC를 각각 측정하였다. $20^{\circ}C$에서 $O_3/UV$ radiation, $O_3/Mg(OH)_2/UV$ radiation 그리고 $O_3/MgO/UV$ radiation에 대한 유사 1차 반응속도 상수는 각각 $9.31{\times}10^{-5}sec^{-1}$, $1.19{\times}10^{-4}sec^{-1}$ 그리고 $1.79{\times}10^{-4}sec^{-1}$, 활성화 에너지는 각각 $3.03kcal{\cdot}mol^{-1}$, $1.79kcal{\cdot}mol^{-1}$ 그리고 $4.23kcal{\cdot}mol^{-1}$ 로 나타났다. 수용액상에서 $Mg(OH)_2$와 MgO가 phenol의 분해와 COD의 제거에 현저한 촉진작용을 나타낸다는 것을 확인하였다. 이러한 실험 결과에 기초하여 $O_3/MgO/UV$ 시스템이 수용액상 phenol을 처리하기 위한 효율적이고 용이한 방법임을 제시하였다.

Keywords

References

  1. J. A. Zazo, J. A. Casas, A. F. Mohedano, and J. J. Rodriguez, "Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst," Appl. Catal. B, 65(3-4), 261-268(2006). https://doi.org/10.1016/j.apcatb.2006.02.008
  2. A. Santos, P. Yustos, S. Rodriguez, and F. Garcia-Ochoa, "Wet oxidation of phenol, cresols and nitrophenols catalyzed by activated carbon in acid and basic media," Appl. Catal. B, 65(3-4), 269-281(2006). https://doi.org/10.1016/j.apcatb.2006.02.005
  3. A. H. Scragg, "The effect of phenol on the growth of Chlorella vulgaris and Chlorella VT-1," Enzyme Microb. Technol., 39(4), 796-799(2006). https://doi.org/10.1016/j.enzmictec.2005.12.018
  4. U. S. EPA, Federal Register, Washington., 52(131) 25861-25962(1987).
  5. Kari Pirkanniemi, and Mika Sillanpaa, "Heterogeneous water phase catalysis as an environmental application: a review," Chemosphere, 48(10), 1047-1060(2002). https://doi.org/10.1016/S0045-6535(02)00168-6
  6. A. Santos, P. Yustos, A. Quintanilla, G. Ruiz, and F. Garcia-Ochoa, "Study of the copper leaching in the wet oxidation of phenol with CuO-based catalysts: causes and effects," Appl. Catal. B, 61(3-4), 323-333(2005). https://doi.org/10.1016/j.apcatb.2005.06.006
  7. A. Santos, P. Yustos, T. Cordero, S. Gomis, S. Rodriguez, and F. Garcia-Ochoa, "Catalytic wet oxidation of phenol on active carbon: stability, phenol conversion and mineralization," Catalysis Today, 102-103, 213-218(2005). https://doi.org/10.1016/j.cattod.2005.02.006
  8. A. Quintanilla, J. A. Casas, A. F. Mohedano, and J. J. Rodriguez, "Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst," Appl. Catal. B, 67(3-4), 206-216(2006). https://doi.org/10.1016/j.apcatb.2006.05.003
  9. A. Tor, Y. Cengeloglu, M. E. Aydin, and M. Ersoz, "Removal of phenol from aqueous phase by using neutralized red mud," J. Colloid Interf. Sci., 300(2), 498-503(2006). https://doi.org/10.1016/j.jcis.2006.04.054
  10. M. Carbajo, F. J. Beltran, F. Medina, O. Gimeno, and F. J. Rivas, "Catalytic ozonation of phenolic compounds: the case of gallic acid," Appl. Catal. B, 67(3-4), 177-186(2006). https://doi.org/10.1016/j.apcatb.2006.04.019
  11. T. Poznyak, and J. Vivero, "Degradation of aqueous phenol and chlorinated phenols by ozone," Ozone Sci. Eng., 27, 447-458(2005). https://doi.org/10.1080/01919510500351529
  12. C. R. Huang, and H. Y. Shu, "The reaction kinetics, decomposition pathways and intermediate formations of phenol in ozonation, $UV/O_3\;and\;UV/H_2O_2$ processes," J. Hazard. Mater., 41(1), 47-64(1995). https://doi.org/10.1016/0304-3894(94)00093-V
  13. B. Legube, and N. Karpel Vel Leitner, "Catalytic ozonation: a promising advanced oxidation technology for water treatment," Catal. Today, 53(1), 61-72(1999). https://doi.org/10.1016/S0920-5861(99)00103-0
  14. B. Kasprzyk-Hordern, M. Ziolek, and J. Nawrocki, "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment," Appl. Catal. B, 46(4), 639-669(2003). https://doi.org/10.1016/S0926-3373(03)00326-6
  15. Bruno, L., David, A. R., And Deborah, R. B., Oznne in water treatment, "The united Sataes of america: Lewis publisher," Colorado, p.12(1991).
  16. J. W. Kang, "고도산화기술(AOT : Advanced oxidation technology)의 수 처리 응용," J. Korean. Che. Soc., 39(6), 35-50 (1999).
  17. Glaze, W, H., Kang, J. W., and Chapin, D. H., "The chemistry of water treatment processes involing ozone, hydrogen peroxide and ultraviolet radiation," Ozone Sci. & Eng., 9(4), 335-352(1987). https://doi.org/10.1080/01919518708552148
  18. Y. Dong, K. He, B. Zhao, Y. Yin, L. Yin, and A. Zhang, "Catalytic ozonation of azo dye active brilliant red X-3B in water with natural mineral brucite," Catal. Commun., 8(11), 1599-1603(2007). https://doi.org/10.1016/j.catcom.2007.01.016
  19. K. Yong, J. Wu, and S. Andrews, "Heterogeneous catalytic ozonation of aqueous reactive dye," Ozone Sci. Eng., 27(4), 257-263(2005). https://doi.org/10.1080/01919510591005888
  20. C. H. Wu, C. Y. Kuo, and C. L. Chang, "Decolorization of C. I. Reactive Red 2 by catalytic ozonation processes," J. Hazard. Mater., 153(3), 1052-1058(2008). https://doi.org/10.1016/j.jhazmat.2007.09.058
  21. Gholamreza Moussavi, and Maryam Mahmoudi, "Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals," Chem. Eng. J., 152(1), 1-7(2009). https://doi.org/10.1016/j.cej.2009.03.014
  22. F. J. Beltran, J. F. Garcia-Araya, and I. Giraldez, "Gallic acid water ozonation using activated carbon," Appl. Catal. B, 63(3-4), 249-259(2006). https://doi.org/10.1016/j.apcatb.2005.10.010
  23. M. R. Assalin, P. L. da Silva, and N. Duran, "Comparison of the efficiency of ozonation and catalytic ozonation (Mn II and Cu II) in phenol degradation," Quim. Nova, 2924-2927(2006). https://doi.org/10.1590/S0100-40422006000100006
  24. C. Cooper, and R. Burch, "An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation," Water Res., 33(18), 3695-3700(1999). https://doi.org/10.1016/S0043-1354(99)00091-3
  25. Y. C. Hsu, J. H. Chen, and H. C. Yang, "Calcium enhanced COD removal for the ozonation of phenol solution," Water Res., 41(1), 71-78(2007). https://doi.org/10.1016/j.watres.2006.09.012
  26. K. Okawa, T. Y. Tsai, Y. Nakano, and W. Nishijima, M. Okada, "Effect of metal ions on decomposition of chlorinated organic substances by ozonation in acetic acid," Chemosphere, 58(4), 523-527(2005). https://doi.org/10.1016/j.chemosphere.2004.09.044
  27. M. Shiraga, T. Kawabata, D. Li, T. Shishido, K. Komaguchi, T. Sano, and K. Takehira, "Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite," Appl. Clay Sci., 33(3-4), 247-259(2006). https://doi.org/10.1016/j.clay.2006.05.005
  28. Y. Dong, G. Wang, P. Jiang, A. Zhang, L. Yue, and X. Zhang, "Catalytic Ozonation of Phenol in Aqueous Solution by $Co_3O_4$," B. Korean. Chem. Soc., 31(10), 2830-2834(2010). https://doi.org/10.5012/bkcs.2010.31.10.2830
  29. R. Richards, R. S. Mulukutla, I. Mishakov, V. Chesnokov, A. Volodin, V. Zaikovski, N. Sun, and K. J. Klabunde, "Nanocrystalline ultra high surface area magnesium oxide as a selective based catalyst," Scripta Mater., 44(8-9), 1663-1666(2001). https://doi.org/10.1016/S1359-6462(01)00877-6
  30. I. V. Mishakov, A. F. Bedilo, R. M. Richards, V. V. Chesnokov, A. M. Volodin, V. I. Zaikovskii, R. A. Buyanov, and K. J. Klabunde, "Nanoparticleline MgO as a dehydrohalogenation catalyst," J. Catal., 206(1), 40-48(2002). https://doi.org/10.1006/jcat.2001.3474
  31. B. Nagappa, and G. T. Chandrappa, "Mesoporous nanocrystalline magnesium oxide for environmental remediation" Microporous Mater., 106, 212-218(2007). https://doi.org/10.1016/j.micromeso.2007.02.052
  32. K. He, Y. M. Dong, Z. Li, L. Yin, A. M. Zhang, and Y. C. Zheng, "Catalytic ozonation of phenol in water with natural brucite and magnesia," J. Hazard. Mater., 159(2-3), 587-592(2008). https://doi.org/10.1016/j.jhazmat.2008.02.061
  33. G. V. Buxton, C. L. Greenstock, W. P. Helman, and W. P. Ross, "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution," J. Phys. Chem. Ref. Data, 17, 513-531(1988). https://doi.org/10.1063/1.555805
  34. J. Hoigne, and H. Bader, "Rate constants of reactions of ozone with organic and inorganic compounds in water-I: Non- dissociating organic compounds," Water Res., 17(2), 173-183(1983). https://doi.org/10.1016/0043-1354(83)90098-2
  35. B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, "Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment," Appl. Catal. B: Environ., 46(4), 639-669(2003). https://doi.org/10.1016/S0926-3373(03)00326-6
  36. P. C. C. Faria, J. J. M. Orfao, and M. F. R. Pereira, "Catalytic ozonation of sulfonated aromatic compounds in the presence of activated carbon," Appl. Catal. B: Environ., 83(1-2), 150-159(2008). https://doi.org/10.1016/j.apcatb.2008.02.010
  37. Shiyun, Z., Suesong, Z. and Daotang, L., "Ozonation of naphthalene sulfonic acids in aqueous solution. Part II Relationships of COD, TOC removal and frontier obial energeies," Water Res., 37(5), 1185-1191(2003). https://doi.org/10.1016/S0043-1354(02)00178-1
  38. C. G. Lee, and M. C. Kim, "Bis (2-chloroethyl) Ether (BCEE)의 오존특성에 관한 연구," J. Korean Ind. Eng. Chem., 21(6), 610-615(2010).

Cited by

  1. Phenol Removal Using Oxygen-Plasma Discharge in the Water vol.22, pp.7, 2013, https://doi.org/10.5322/JESI.2013.22.7.915