• Title/Summary/Keyword: UV-B radiation

검색결과 202건 처리시간 0.029초

Impacts of Ultraviolet-B Radiation on Rice-Field Cyanobacteria

  • Sinha, Rajeshwar P.;Hader, Donat-P.
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.439-441
    • /
    • 2002
  • Cyanobacteria are the dominant micro flora in rice-fields, contributing significantly to fertility as a natural biofertilizer. Recent studies show a continuous depletion of the stratospheric ozone layer, and the consequent increase in solar UV-B (280-315 nm) radiation reaching the Earth's surface. UV-B radiation causes reduction in growth, survival, protein content, heterocyst frequency and fixation of carbon and nitrogen in many cyanobacteria. UV -B induced bleaching of pigments, disassembly of phycobilisomal complexes, thymine dimer formation and alterations in membrane permeability have also been encounterd in a number of cyanobacteria. However, certain cyanobacteria produce photoprotective compounds such as water soluble colorless mycosporine-like amino acids (MAAs) and the lipid soluble yellow-brown colored sheath pigment, scytonemin, to counteract the damaging effects of UV-B. Cyanobacteria, such as Anabaena sp., Nostoc commune, Scytonema sp. and Lyngbya sp. were isolated from rice fields and other habitats in India and screened for the presence of photoprotective compounds. A circadian induction of the synthesis of MAAs by UV -B was noted in a number of cyanobacteria. Polychromatic action spectra for the induction of MAAs in Anabaena sp. and Nostoc commune also show the induction to be UV-B dependent peaking at 290 nm. Another photoprotective compound, scytonemin, with an absorption maximum at 386 nm (also absorbs at 300, 278, 252 and 212 nm), was detected in many cyanobacteria. In conclusion, a particular cyanobacterium having photoprotective compounds may be a potent candidate as biofertilizer for crop plants.

  • PDF

UV-B 강도 변화가 오이(Cucumis sativus L.)의 생장, 광합성 및 색소에 미치는 영향 (Effects of different UV-8 levels on the growth, photosynthesis and pigments in cucumber(Cucumis sativus L.))

  • 김학윤;이인중;신동현;김길웅
    • 생명과학회지
    • /
    • 제8권3호
    • /
    • pp.272-278
    • /
    • 1998
  • UV-B 강도 변화가 식물의 생장에 미치는 영향을 조사하기 위하여, 오이를 이용하여 3주간 3단계의 UV-B[일일 평균 UV-$B^{BE}$; 무처리(0.03), 저UV-B(6.40), 고UV-B(11.32) kJ $m^{-2}$]조사 실험을 수행하였다. 3주간의 UV-B 조사에 의해 건물중 및 엽면적은 고UV-B 처리와 저UV-B 처리에서 각각 60%와 40% 정도의 감소를 보였으나, 엽중비는 증가하였다. UV-B에 의해 고UV-B 처리에서 약 45%, 저UV-B 처리에서 약 37%의 광합성속도의 감소를 나타내었으나 증산속도의 변환느 나타나지 않았다. 총 엽록소 함량은 UV-B 강도의 증가에 따라 감소하였으며, UV-흡수물질인 flavonoid의 함량은 고UV-B 처리에서 약 19% 저UV-B처리에서 약 14%의 증가를 보였다. 이상의 결과로 볼 때 UV-B조사는 오이 식물에 극심한 생육 저해를 나타내었으며, 그 피해는 UV-B 강도에 따라 증가하였다. 따라서 현재 지구에 도달하는 태양UV-B에 의해서도 오이식물은 영향을 받고 있는 것으로 사료되며, 장래 예상되는 오존층 감소에 의해서도 생육장해를 나타낼 것으로 사료된다.

  • PDF

제주도 고산지역 자외선복사의 월변화 특성과 원인 고찰 (A Study on the Monthly Characteristics of Solar UV Radiation in Gosan, Jeju)

  • 김영아;최우갑
    • 대기
    • /
    • 제27권3호
    • /
    • pp.291-300
    • /
    • 2017
  • The monthly-mean irradiance of ultra violet (UV)-B and UV-A observed from 2005 to 2014 and 2012 to 2014, respectively, at noon in Gosan, Jeju, South Korea are analyzed. We compare cloudiness, total ozone, visibility, and relative humidity with an emphasis on the four months from May to August (MJJA), which shows the largest UV radiation. While the incoming UV-B radiation at the top of the atmosphere in Gosan is the largest in June due to the small solar zenith angle, the observed surface UV-B shows an unexpected smaller value in June than those in May, July or August. In June, the meteorological conditions affecting Gosan are completely dominated by cloudiness and thus, frequent overcast seems to determine the minimum UV-B. Another important UV-determining factor is the total ozone, which exhibits a monotonic decrease during MJJA without agreeing to the characteristic feature of UV. The ratio of UV-B to UV-A is not generally influenced by cloudiness. Thus, the ratio is a useful indicator of atmospheric turbidity showing larger values for increasing visibility, except in June. A simple model has been used to estimate surface UV by using the observed ozone and visibility in the cloudless condition. The result shows that UV has the lowest value in June with small variation during MJJA. Model estimation also shows that the different characteristic features observed in July between surface UV-B and UV-A is the result of less absorption of UV-B by ozone than that of UV-A by a smaller amount of total ozone.

UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과 (Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves)

  • 김태윤;조명환;홍정희
    • 한국환경과학회지
    • /
    • 제19권12호
    • /
    • pp.1323-1334
    • /
    • 2010
  • The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.

태평양 북극 결빙 해역 내 유색 용존 유기물 CDOM 분포에 따른 태양광 투과 비교 (Transmission of Solar Light according the Relative CDOM Concentration of the Sea-ice-covered Pacific Arctic Ocean)

  • 강성호;김현철;하선용
    • Ocean and Polar Research
    • /
    • 제40권4호
    • /
    • pp.281-288
    • /
    • 2018
  • The transmission of solar light according to the distribution of chromophoric dissolved organic matter (CDOM) was measured in the Pacific Arctic Ocean. The Research Vessel Araon visited the ice-covered East Siberian and Chukchi Seas in August 2016. In the Arctic, solar [ultraviolet-A (UV-A), ultraviolet-B (UV-B), and photosynthetically active radiation (PAR)] radiation reaching the surface of the ocean is primarily protected by the distribution of sea ice. The transmission of solar light in the ocean is controlled by sea ice and dissolved organic matter, such as CDOM. The concentration of CDOM is the major factor controlling the penetration depth of UV radiation into the ocean. The relative CDOM concentration of surface sea water was higher in the East Siberian Sea than in the Chukchi Sea. Due to the distribution of CDOM, the penetration depth of solar light in the East Siberian Sea (UV-B, $9{\pm}2m$; UV-A, $13{\pm}2m$; PAR, $36{\pm}4m$) was lower than in the Chukchi Sea (UV-B, $15{\pm}3m$; UV-A, $22{\pm}3m$; PAR, $49{\pm}3m$). Accelerated global warming and the rapid decrease of sea ice in the Arctic have resulted in marine organisms being exposed to increased harmful UV radiation. With changes in sea ice covered areas and concentrations of dissolved organic matter in the Arctic Ocean, marine ecosystems that consist of a variety of species from primary producers to high-trophic-level organisms will be directly or indirectly affected by solar UV radiation.

Effects of Artificial UV-B and Solar Radiation on Four Species of Antarctic Rhodophytes

  • Han, Tae-Jun;Park, Seon-Joo;Lee, Min-Soo;Han, Young-Seok;Kang, Sung-Ho;Chung, Ho-Sung;Lee, Sang-Hoon
    • Ocean and Polar Research
    • /
    • 제23권4호
    • /
    • pp.389-394
    • /
    • 2001
  • During austral summer 1998 we examined the impacts of artificial UV-B and solar radiation on chlorophyll a content and fresh weight of four species of Antarctic red algae namely, Georgiella confluens, Iridaea cordata, Pantoneura plocamioides and Porphyra endiviifolium. These subject species were taken in consideration of clear demarcations of their vertical distribution and classified as shallow water group (Iridaea and Porphyra) and deep water group (Georgiella and Pantoneura). When irradiated with artificial UV-B at the irradiance of $2.0Wm^{-2}$ the shallow water inhabitants were much more resistant than the algae from deep water the fresh weight of which was reduced by 40-50% relative to control apart from loss of pigmentation. Direct solar radiation was lethal to the deep water group with a sign of complete bleaching whereas the shallow water group did not show any change in the physiological parameters. We were unable to discriminate difference in the algal sensitivity between UV-filtered and UV-transparent treatments since samples tested were either all unaffected or dead. Spectrophotometric measurements of methanolic extracts revealed a strong absorption peak in the UV range in the shallow water group of algae, Iridaea and Porphyra, but not in the deep water counterparts. Species difference in sensitivity to artificial UV-B and solar radiation is discussed in relation to biochemical and morphological characteristics and the role of the radiation in the algal vertical distribution is suggested from ecological perspective.

  • PDF

살리실산이 오이 잎의 산화적 스트레스와 UV-B 내성에 미치는 영향 (Effects of Salicylic Acid on Oxidative Stress and UV-B Tolerance in Cucumber Leaves)

  • 홍정희;김태윤
    • 한국환경과학회지
    • /
    • 제16권12호
    • /
    • pp.1345-1353
    • /
    • 2007
  • The effect of salicylic acid(SA) on antioxidant system and protective mechanisms against UV-B induced oxidative stress was investigated in cucumber(Cucumis sativus L.) leaves. UV-B radiation and SA were applied separately or in combination to first leaves of cucumber seedlings, and dry matter accumulation, lipid peroxidation and activities of antioxidant enzymes were measured in both dose and time-dependant manner. UV-B exposure showed reduced levels of fresh weight and dry matter production, whereas SA treatment significantly increased them. SA noticeably recovered the UV-B induced inhibition of biomass production. UV-B stress also affected lipid peroxidation and antioxidant enzyme defense system. Malondialdehyde(MDA), a product of lipid peroxidation, was greatly increased under UV-B stress, showing a significant enhancement of a secondary metabolites, which may have antioxidative properties in cucumber leaves exposed to UV-B radiation. Combined application of UV-B and SA caused a moderate increase in lipid peroxidation. These results suggest that SA may mediate protection against oxidative stress. UV-B exposure significantly increased SOD, APX, and GR activity compared with untreated control plants. Those plants treated with 1.0 mM SA showed a similar pattern of changes in activities of antioxidant enzymes. SA-mediated induction of antioxidant enzyme activity may involve a protective accumulation of $H_2O_2$ against UV-B stress. Moreover, their activities were stimulated with a greater increase by UV-B+SA treatment. The UV-B+SA plants always presented higher values than UV-B and SA plants, considering the adverse effects of UV-B on the antioxidant cell system. ABA and JA, second messengers in signaling in response to stresses, showed similar mode of action in UV-B stress, supporting that they may be important in acquired stress tolerance. Based on these results, it can be suggested that SA may participates in the induction of protective mechanisms involved in tolerance to UV-B induced oxidative stress.

Influence of UV-B Radiation on Photosynthesis, Growth and Pigmentation of Chondrus ocellatus (Rhodophyta) from Shallow Water

  • Taejun Han;Han, Young-Seok;Cho, Man-Gee;Park, Jin-Hee;Goo, Jae-Gun;Kang, Sung-Ho
    • 환경생물
    • /
    • 제21권4호
    • /
    • pp.368-376
    • /
    • 2003
  • The UV-B sensitivity was tested for the intertidal species Chondrus ocellatus from Korea, by measuring photosynthesis estimated as effective quantum yield ($\Phi_{PSII}$) of photosystem II (PS II), growth and content and composition of photosynthetic pigments and UV-absorbing pigments (UVAPs). The $$\Phi_{PSII}$ of the alga decreased with increasing time of exposure to UV-B radiation, followed by fast and nearly full recovery indicating dynamic photoinhibiton. Fresh weight-based growth and pigment contents of C. ocellatus were not seriously affected by UV-B radiation. A single broad peak at 327 nm was obtained from methanol extracts of C. ocellatus, and the absorbance peak increased with increasing UV. The single peak was resolved into three peaks (311, 330 and 336 nm) by the fourth -derivative, and quantitative change in response to UV-B radiation occurred only at 330 nm. High performance liquid chromatography (HPLC) analysis of purified extracts indicated that three MAAs (mycosporine-like amino acids) are present, asterina 330, palythine and shinorine. Field observations during three growing months showed that C. ocellatus exhibit the highest amount of UVAPs in May followed by July and little trace in September, coinciding with the species' phenology. In an ecological context, dynamic photoinhibition as well as accumulation of UVAPs may enable the shallow water red alga C. ocellatus to be well adapted to high UV-B environments.

Effects of solar UV radiation on photosynthetic performance of the diatom Skeletonema costatum grown under nitrate limited condition

  • Li, Gang;Gao, Kunshan
    • ALGAE
    • /
    • 제29권1호
    • /
    • pp.27-34
    • /
    • 2014
  • Availability of nutrients is known to influence marine primary production; and it is of general interest to see how nutrient limitation mediates phytoplankton responses to solar ultraviolet radiation (UVR, 280-400 nm). The red tide diatom Skeletonema costatum was cultured under nitrate (N)-limited and N-replete conditions and exposed to different solar irradiation treatments with or without UV-A (315-400 nm) and UV-B (280-315 nm) radiation. Its photochemical quantum yield decreased by 13.6% in N-limited cells as compared to that in N-replete ones under photosynthetically active radiation (PAR)-alone treatment, and the presence of UV-A or UV-B decreased the yield further by 2.8 and 3.1%, respectively. The non-photochemical quenching (NPQ), when the cells were exposed to stressful light condition, was higher in N-limited than in N-replete grown cells by 180% under PAR alone, by 204% under PAR + UV-A and by 76% under PAR + UV-A + UV-B treatments. Our results indicate that the N limitation exacerbates the UVR effects on the S. costatum photosynthetic performance and stimulate its NPQ.

Effects of Water Deficit and UV-B Radiation on Accumulation of Functional Metabolites in Crops: A Review

  • Lim, Jung-Eun;Lee, Seul-Bi;Lee, Ye-Jin;Cho, Min-Ji;Yun, Hye-Jin;Lee, Deog-Bae;Hong, Suk-Young;Sung, Jwa-Kyung
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.409-419
    • /
    • 2016
  • With increasing social concerns for healthy food, the studies on the cultivation of crops to increase accumulation of functional metabolites in crops have been investigated. Accumulation of the metabolites in crops is highly affected by various types of stress, such as nutrient deficiency, water deficit (WD), extreme temperature and UV-B radiation as well as their own life cycle. This review summarizes the previous studies on the effects of environmental stresses, especially WD and UV-B radiation, on accumulation of functional metabolites in crops. UV-B radiation and WD during specific period (mainly at maturation stage) activates the adaptation and/or defense system in crops, thereby increasing biosynthesis of the metabolites. Although WD and UV-B radiation tend to decrease in crop yield, the decrease can be compensated by the production of high value crops having high content of functional metabolites.