• Title/Summary/Keyword: UV resistance analysis

Search Result 67, Processing Time 0.028 seconds

NO2 gas sensing properties of UV activated ZnS nanowires at room temperature (상온에서 UV 활성화된 ZnS 나노와이어의 NO2 가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.297-302
    • /
    • 2014
  • ZnS nanowires were synthesized in order to investigate $NO_2$ gas sensing properties. They were grown on the sapphire substrate using ZnS powders. SEM (scanning electron microscopy) showed the diameter and length of the ZnS nanowires were approximately in the range of 50 - 100 nm and a few $10s\;{\mu}m$, respectively. They were also found to be composed of Wurtzite- structured single crystals from TEM (transmission electron microscopy) analysis. $NO_2$ gas sensing performance of the ZnS nanowire was measured with electrical resistance changes caused by $NO_2$ gas with a concentration of 1-5ppm. The sensor was UV treated with an intensity of $1.2mW/cm^2$ to facilitate charge carrier transfer. The responses of the ZnS nanowires to the $NO_2$ gas at room temperature, treated with UV of two different wavelengths of 365 nm and 254 nm, are measured to be 124.53 - 206.87 % and 233.97 - 554.83%, respectively. In the current work, the effect of UV treatment on the gas sensing performance of the ZnS nanowires was studied. And the underlying mechanism for the electrical resistance changes of the ZnS nanowires by $NO_2$ gas was also discussed.

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV (UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가)

  • Park, Hee Min;Yang, Won Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.169-179
    • /
    • 2018
  • The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.

Effect of Electrical Properties on the EPDM- $Al(OH)_3$ Composite by UV Accelerated weathering (Al(OH)3가 EPDM의 자외선 촉진열화에 미치는 전기적 특성평가)

  • Shim, Dae-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.243-247
    • /
    • 2003
  • The effect of accelerated weathering(UV) on three type of ethylene propylene diene monomer(EPDM) composite used for higher voltage insulator were investigated by weather-emoter. For weatherability of EPDM composite, surface resistance, dielectric breakdown strength, change of contact angle, surface composition were measured according to UV accelerated weathering time. From the resort of the measurement of surface resistivity, contact angle of EPDM composite decreased and showed chalking and cracking phenomenon when UV weathweing time was for 1500 h and 2000 h. The analysis of surface atomic composition indicated that surface aluminiu(Al) content was detected due to chalking phenomenon after 1500 h of UV weathering, Oxygen content of all composite increased due to the oxidation.

  • PDF

The analysis of the optical response of merocyanine LB films using QCM (수정진동자를 이용한 메로시아닌 색소 LB막의 광반응 특성)

  • Kang, Ki-Ho;Kim, Jeong-Myung;Chang, Jung-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.434-436
    • /
    • 2000
  • In this study, we investigate the optical characteristics of merocyanine dye Langmuir-Blodgett(LB) film using the oscillation characteristics of quartz crystal. As results, the resistance and frequency shift at the parallel resonance under the UV irradiation is to be going down. This behaviour of resistance and frequency is different from the case of general mass adsorption into the organic film on the quartz crystal. Generally the frequency decrease of quartz crystal oscillator, which has been considered as mass loading, goes along with the resistance increase. Thus it has been suggested that the J-aggregate dissociation in merocyanine dye LB film by UV irradiation give rise to transformation of oscillation characteristics of quartz crystal.

  • PDF

Gene-Specific Repair of 6-4 Photoproducts in Trichothiodystrophy Cells

  • Nathan, Sheila;Van Hoffen, Anneke;Mullenders, Leon H.F.;Mayne, Lynne V.
    • BMB Reports
    • /
    • v.32 no.6
    • /
    • pp.554-560
    • /
    • 1999
  • TTD1BI cells are non-hypersensitive to UV irradiation and perform normal genome repair of pyrimidine dimers but fail to excise 6-4 photoproducts and, concomitantly, are unable to restore RNA synthesis levels following UV irradiation. This pointed to a detect in gene-specific repair and this study was undertaken to examine repair of 6-4 photoproducts at the gene-level. The results indicated a defect in gene-specific repair of 6-4 photoproducts in active genes, although strand-specificity of 6-4 photoproduct removal was essentially similar to that of normal cells. These findings indicate that the near normal UV resistance of TTD1BI cells may be due to the inability of these cells to remove DNA lesions preferentially, as well as to the cells opting out of the cell cycle to repair damage before resuming replication.

  • PDF

Electrical Properties of PET(polyethylene teraphthalate) by Ion Implantation (이온주입에 의한 PET(polyethylene teraphthalate)의 표면결합상태 변화와 표면전기전도도 특성)

  • 이재형;길재근
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.382-386
    • /
    • 2004
  • A study has been made of surface modification of organic materials by ion implantation to increase the surface electrical properties. The substrate used were PET(polyethylene teraphtalate). N$^{+}$, Ar$^{+}$ implantation was peformed at energies of 40 keV and 50 keV with fluences from $5{\times}10^{15}$, $1{\times}10^{16}$,$7{\times}10^{16}$, $1{\times}10^{17}$/ ions/$cm^2$. UV/Vis, FT-IR and XPS spectroscopy measured for surface structure changes. Surface resistance decrease of implanted polymers was affected by ion implantation energy, ion species and ion dose rate. Surface conductivity of PET increased $2{\times}10^{9}$/∼$2{\times}10^{10}$/$\Omega$/sq by ion implantation. Result of various spectroscopy analysis, the cause of increasing PET surface conductivity was expected to breaking C=O bonds. It was formation carbon network structure by promote cross-linking and create C-C, C=C bonds.

Rubiginone $B_2$, Isotetracenone Antibiotics which Reverses Multidrug-Resistance in KB Tumor Cells (KB 암세포에 효과있는 Streptomyces plicotosporus가 생산하는 항암증강물질 Rubiginone $B_2$ 에 관한 연구)

  • ;;Seto Haruo
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.491-494
    • /
    • 1994
  • Antibiotic HS-2 was purified from the culture broth of Streptomyces plicatosporus which was isolated from soil, by solvent extraction, silica gel column chromatography and gel filtration. Through the analysis of UV, $^{1}$H-NMR, $^{13}$C-NMR spectrum, HS-2 was identified as rubiginone B$_{2}$. It was confirmed that HS-2 enhanced the cytotoxicity of colchicine against multidrug-resistant tumor cells.

  • PDF

Research on Ultraviolet Light Degradation According to Types of Encapsulants for PV Modules (태양광 모듈용 봉지재 종류에 따른 자외선 광열화 연구)

  • Seungah Ur;RakHyun Jeong;JuHwi Kim;Chanyong Lee;Lee Jaehyeong
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.108-113
    • /
    • 2023
  • Pressure to reduce costs in the current solar market is driving the development and implementation of new module designs and prompting the use of new materials and components. In order to utilize the variability of each material that makes up the module, it is essential to understand the basic characteristics of the material. In this article, we evaluate light degradation after UV irradiation as an encapsulation material. Measure and analyze the results of various characteristic tests for discoloration, optical and electrical property degradation before and after UV accelerated testing. To evaluate weathering stability, UV tests were performed comparing existing EVA and UVT-EVA, POE and improved low-cost POE. Even in the weather resistance test with a total UV exposure of 60 kW/m2, the properties of the encapsulants were mostly stable. EVA and POE-based encapsulants showed slight differences, and these slight differences are believed to pose a threat to long-term stability. This study is a basic analysis of encapsulation research for PV modules and will be helpful in understanding future development and encapsulant properties.

The Site-Directed A184S Mutation in the HTH Domain of the Global Regulator IrrE Enhances Deinococcus radiodurans R1 Tolerance to UV Radiation and MMC Shock

  • Zhang, Chen;Zhou, Zhengfu;Zhang, Wei;Chen, Zhen;Song, Yuan;Lu, Wei;Lin, Min;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2125-2134
    • /
    • 2015
  • IrrE is a highly conserved global regulator in the Deinococcus genus and contributes to survival from high doses of UV radiation, ionizing radiation, and desiccation. Drad-IrrE and Dgob-IrrE from Deinococcus radiodurans and Deinococcus gobiensis I-0 each share 66% sequence identity. However, Dgob-IrrE showed a stronger protection phenotype against UV radiation than Drad-IrrE in the D. radiodurans irrE-deletion mutant (ΔirrE), which may be due to amino acid residues differences around the DNA-binding HTH domain. Site-directed mutagenesis was used to generate a Drad-IrrE A184S single mutant, which has been characterized and compared with the ΔirrE mutant complemented strain with Drad-irrE, designated ΔirrE-E. The effects of the A184S mutation following UV radiation and mitomycin C (MMC) shock were determined. The A184S mutant displayed significantly increased resistance to UV radiation and MMC shock. The corresponding A184 site in Dgob-IrrE was inversely mutated, generating the S131A mutant, which exhibited a loss of resistance against UV radiation, MMC shock, and desiccation. qPCR analysis revealed that critical genes in the DNA repair system, such as recA, pprA, uvrA, and ddrB, were remarkably induced after UV radiation and MMC shock in the ΔirrE-IE and A184S mutants. These data suggested that A184S improves the ability against UV radiation and MMC shock, providing new insights into the modification of IrrE. We speculated that the serine residue may determine the efficiency of DNA binding, leading to the increased expression of IrrE-dependent genes important for protection against DNA damage.

Increased Water Resistance and Adhesion Force to Skin through the Hybrid of Fatty Acid Ester and Titanium Dioxide (지방산 에스테르와 티타늄다이옥사이드의 복합화를 통한 내수성과 피부 밀착력 개선)

  • Ji Yeon Hong;Chi Je Park;Yong Woo Kim;Sang Keun Han;Sung Bong Kye;Ho Sik Roh;Soo Nam Park
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.247-258
    • /
    • 2023
  • This study aims to investigate the enhancement of water resistance and improvement in adhesion to the skin by combining dextrin palmitate and isopropyl titanium triisostearate coating materials with titanium dioxide. Due to the recent increase in consumers who enjoy outdoor activities, the demand for sunscreen with excellent water resistance is increasing. Prior research was conducted with O/W, Pickering, and W/O/W multiple formulations, but there was a limit to water resistance. The purpose of this study is to develop a complex inorganic powder that can improve water resistance and increase adhesion to the skin to solve this problem. First, we combined dextrin palmitate and isopropyl titanium triisostearate coating materials to form a composite with titanium dioxide. The coating of the inorganic powder was confirmed using FE-SEM and FT-IR analysis. The composite exhibited significantly higher in vitro water resistance compared to other formulations. The hydrophobicity of the coated inorganic powder was compared by measuring the contact angles. When the coated inorganic powder was applied to the W/O sunscreen formulation and the non-coated inorganic powder was applied to the W/O sunscreen formulation as a control, the SPF of the sunscreen containing the coated inorganic powder was higher. These results were the same when observed with a UV camera. Finally the adhesion of the coated inorganic powder to the skin was assessed by applying it to a foundation product. In vivo study, it was observed that the product formulated with the coated powder exhibited less smudging compared to the foundation product formulated with the non-coated powder. The developed inorganic powder in this study demonstrated excellent adhesion to the skin, providing a superior sensory experience, as well as enhanced hydrophobicity and remarkable water resistance effects. In the future, the result of this study is expected to help develop various sunscreen products to improve water resistance.