DOI QR코드

DOI QR Code

상온에서 UV 활성화된 ZnS 나노와이어의 NO2 가스 검출 특성

NO2 gas sensing properties of UV activated ZnS nanowires at room temperature

  • 강우승 (인하공업전문대학 금속재료과)
  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 투고 : 2014.12.12
  • 심사 : 2014.12.24
  • 발행 : 2014.12.31

초록

ZnS nanowires were synthesized in order to investigate $NO_2$ gas sensing properties. They were grown on the sapphire substrate using ZnS powders. SEM (scanning electron microscopy) showed the diameter and length of the ZnS nanowires were approximately in the range of 50 - 100 nm and a few $10s\;{\mu}m$, respectively. They were also found to be composed of Wurtzite- structured single crystals from TEM (transmission electron microscopy) analysis. $NO_2$ gas sensing performance of the ZnS nanowire was measured with electrical resistance changes caused by $NO_2$ gas with a concentration of 1-5ppm. The sensor was UV treated with an intensity of $1.2mW/cm^2$ to facilitate charge carrier transfer. The responses of the ZnS nanowires to the $NO_2$ gas at room temperature, treated with UV of two different wavelengths of 365 nm and 254 nm, are measured to be 124.53 - 206.87 % and 233.97 - 554.83%, respectively. In the current work, the effect of UV treatment on the gas sensing performance of the ZnS nanowires was studied. And the underlying mechanism for the electrical resistance changes of the ZnS nanowires by $NO_2$ gas was also discussed.

키워드

참고문헌

  1. B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu, G. W. Yang, J. Phys. Chem. 112 (2008) 6643.
  2. A. Kolmakov, D. O. Klenov. Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667. https://doi.org/10.1021/nl050082v
  3. T. J. Hsueh, C. L. Hsu, S. J. Chang, I. C. Chen, Sens. Actuators B 126 (2007) 473. https://doi.org/10.1016/j.snb.2007.03.034
  4. Y.J. Choi, I. S. Hwang, J. G. Park, K. J. Choi, J. H. Park, J. H. Lee, Nanotechnol. 19 (2008) 095508. https://doi.org/10.1088/0957-4484/19/9/095508
  5. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Adv. Mater. 15 (2003) 997. https://doi.org/10.1002/adma.200304889
  6. L. Liao, H. B. Lu, M. Shuai, J. C. Li, Y. L. Liu, C. Liu, Z. X. Shen, T. Yu, Nanotechnol. 19 (2008) 175501. https://doi.org/10.1088/0957-4484/19/17/175501
  7. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, J. Am. Chem. Soc. 129 (2007) 6070. https://doi.org/10.1021/ja070788m
  8. L. Francioso, A. M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators B 130 (2008) 70. https://doi.org/10.1016/j.snb.2007.07.074
  9. H. R. Kim, K. I. Choi, J. H. Lee, S. A. Akbar, Sens. Actuators B 136 (2009) 138. https://doi.org/10.1016/j.snb.2008.11.016
  10. I. S. Hwang, S. J. Kim, J. K. Choi, J. Choi, H. Ji, G. T. Kim, G. Cao, J. H. Lee, Sens, Actuators B 148 (2010) 595. https://doi.org/10.1016/j.snb.2010.05.052
  11. S. Vallejos, T. Stoycheva, P. Umek, C. Navio, R. Snyders, C. Bittencourt, E. Llobet, C. Blackman, S. Moniz, and X. Correig, Chem. Commun. 47 (2011) 565. https://doi.org/10.1039/C0CC02398A
  12. R. Khan, H. W. Ra, J. T. Kim, W. S. Jang, D. Sharma, Y. H. Im, Sens. Actuators B 150 (2010) 389. https://doi.org/10.1016/j.snb.2010.06.052
  13. Y. Paska, H. Haick, ACS Appl. Mater. Interfaces 4 (2012) 2604. https://doi.org/10.1021/am300288z
  14. J. Zeng, M. Hu, W. Wang, H. Chen, Y. Qin, Sens. Actuators B 161 (2012) 447. https://doi.org/10.1016/j.snb.2011.10.059
  15. S. Park, C. Jin, H. Kim, C. Hong, and C. Lee, J. Lumin. 132 (2012) 231. https://doi.org/10.1016/j.jlumin.2011.08.029
  16. S. Chen, L. Li, X. Wang, W. Tian, X. Wang, D. M. Tang, Y. Bando, D. Goldberg, Nanoscale 4 (2012) 2658. https://doi.org/10.1039/c2nr11835a
  17. J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, A. F. Abouraddy, Nano Lett. 11 (2011) 4768. https://doi.org/10.1021/nl202583g
  18. Z. Deng, H. Yan, Y. Liu, Angew. Chem. Int. Ed. 122 (2010) 8877. https://doi.org/10.1002/ange.201003952
  19. Y. Shuai, C. Liu, J. Wang, X. Cui, L. Nie, Anal. 138 (2013) 3259. https://doi.org/10.1039/c3an00206c
  20. J. H. He, Y. Y. Zhang, J. Liu, D. Moore, G. Bao, Z. L. Wang, J. Phys. Chem. C 111 (2007) 12152.
  21. N. Uzar, S. Okur, and M. C. Arikan, Sens. Actuators A 167 (2011) 188. https://doi.org/10.1016/j.sna.2010.10.005
  22. X. Wang, Z. Xie, H. Huang, Z. Liu, D. Chen, G. Shen, J. Mater. Chem. 22 (2012) 6845. https://doi.org/10.1039/c2jm16523f
  23. S. Xiong, B. Xi, C. Wang, D. Xu, X. Feng, Z. Zhu. Y. Qian, Adv. Func. Mater. 17 (2007) 2728. https://doi.org/10.1002/adfm.200600891
  24. R. Xing, Y. Xue, X. Liu, B. Liu, B. Miao, W. Kang, S. Liu, Cryst.Eng.Comm. 14 (2012) 8044. https://doi.org/10.1039/c2ce26269j
  25. S. Park, S. An, Y. Mun, C. Lee, ACS Appl. Mater. Interfaces 5 (2013) 4285. https://doi.org/10.1021/am400500a
  26. P. Camagni, P. Galinetto, G. Faglia, C. Perego, G. Samoggia, G. Sberveglieri, Sens. Actuators B 31 (1996) 99. https://doi.org/10.1016/0925-4005(96)80023-2
  27. N. Barsan, U. Weimar, J. Electroceram. 7 (2001) 143. https://doi.org/10.1023/A:1014405811371
  28. N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Asia 7 (2003) 63. https://doi.org/10.1023/A:1023436725457
  29. E. Comini, A. Cristalli, G. Faglia, G. Sberveglieri, Sens. Actuators B 65 (2000) 260. https://doi.org/10.1016/S0925-4005(99)00350-0
  30. X. Fang, Y. Bando, M. Liao, T. Zhai, U.K. Gautam, L. Li, Y. Koide, D. Goldberg, Adv, Func. Mater. 20 (2010) 500. https://doi.org/10.1002/adfm.200901878