• Title/Summary/Keyword: UV/ozone treatment

Search Result 104, Processing Time 0.03 seconds

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.

Removal of Sulfamethoxazole using Ozonation or UV Radiation; Kinetic Study and Effect of pH (오존 처리 및 UV 조사를 이용한 Sulfamethoxazole 제거; 동역학적 고찰 및 pH 영향)

  • Jung, Yeonjung;Kim, Wangi;Jang, Hayoung;Choi, Yanghwun;Oh, Byungsoo;Kang, Joonwun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • This study was performed to assess the potential use of ozone or UV radiation for the treatment of water contaminated with sulfamethoxazole (SMX), which is frequently used antibiotic in human and veterinary medicines, especially focusing on the kinetic study and effect of pH. In a study using ozone alone, kinetic study was performed to determine second-order rate constant ($k_{O3,SMX}$) for the reactions of SMX with ozone, which was found to be $1.9{\times}10^6M^{-1}s^{-1}$ at pH 7. The removal efficiencies of SMX by ozone were decreased with increase of pH due to rapid decomposition of ozone under the condition of various pH (2.5, 5.3, 7, 8, 10). In a UV irradiation study at 254 nm, a kinetic model for direct photolysis of SMX was developed with determination of quantum yield ($0.08mol\;Einstein^{-1}$) and molar extinction coefficient ($15,872M^{-1}cm^{-1}$) values under the condition of quantum shielding due to the presence of reaction by-products formed during photolysis. For effect of pH on photolysis of SMX, SMX in the anionic state ($S^-$, pH > 5.6), most prevalent form at environmentally relevant pH values, degraded more slowly than in the neutral state (SH, 1.85 < pH < 5.6) by UV radiation at 254 nm.

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

The morphology and Phtoelectrochemical properties of $TiO_2$ electrode with UV Treatment and Oxygen Injection (산소와 UV 조사된 $TiO_2$ 광전극의 표면형상과 전기화학적 특성)

  • Zhao, Xingguan;Jin, En Mei;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.240-240
    • /
    • 2010
  • In this paper, in these case of photoelectrode using UV treatment after oxygen solar conversion efficiency is increased. According to oxygen injection UV treatment will removal residual organics and increase the TiO2 surface area but also UV treatment can affect the same chemical action of ozone treatment. More porous networks and larger porosities were obtained in the TiO2 films prepared UV treatment after oxygen injection.

  • PDF

Advanced Water Treatment by Ozonation in a Continuous Flow System (연속식 오존접촉조에서의 정수처리효과에 대한 연구)

  • Lee, Byung-Ho;Jung, Woo-Sung;Kim, Jae-Hoon;Lee, Jun-Hee;Kim, Tae-Gun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.94-104
    • /
    • 1997
  • Ozone Treatment is getting a common process in a water treatment plant all over the nation. Especially an advanced water treatment using ozone and biofiltration has been a typical method in the regions where using the Nak-Dong River as a drinking water source. The effectiveness of ozone treatment in a continuous flow contact system was investigated with sand filtered water of the Nak-dong River. Pilot tests of the experiments were performed three times of the year like June, August, and October 1995. Most degradable organics of sand filtered water were oxidized in the first and second contact chamber of the system. Ozone treatment was effective for the removal of UV254 absorbance. However, Noticeable removals of $KMnO_4$ demand and TOC(Total Organic Carbon) were occurred when their concentrations exceeded about 5mg/l. The organics causing $KMnO_4$ demand and TOC were degraded into lower molecular matter in an early stage of the ozone contact in the system. Dissolved oxygen concentration was increased after ozone treatment.

  • PDF

A Study on the Removal Characteristics of Microcystin in the Water Treatement Plant by Ozonation (오존산화에 의한 정수장의 Microcystin제거 특성에 관한 연구)

  • 김민규;권재현;조영하;이진애;권오섭
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.74-83
    • /
    • 2003
  • Microcystin, stable compounds with circular heptapeptides, is presented inside cyanobacterial cell. So far, over 30 types have been known to exist and microcystin-LR, RR among them are the most potent toxin compound. By this reason, a strong oxidant, ozone was used in this study to remove the microcystins produced by cyanobacteria. Removal efficiency of microcystin at M water treatment plant was also evaluated. Microcystin concentration was determined by protein phosphatase inhibition assay. The results showed that dissolved microcystin in raw water detected in the range of 0.011-0.028 ㎍ Microcystin-RR equivalent/l. Above 98% of microcystin was removed through overall treatment system. Therefore, the water treatability of M treatment plant seemed to be excellent. Removal efficiency of microcystin according to unit process varied as characteristics of raw water such as DOC, UV/sub 254/ and turbidity. Removal efficiency of microcystin by ozonation was investigated in laboratory according to contact time and ozone dose. Dissolved microcystin was increased by twice fold according to ozone contact time, but increased by fifth fold according to ozone dose. So, changing of ozone dose more affected microcystin release than changing of ozone contact time. Behavior of microcystin by ozonation was similar to that of DOC, and residual ozone concentration gave influence to removal ratio of microcystin. In conclusion, single ozone treatment wasn't effective on microcystin removal in case of water containing a lot of cells. Therefore, it's more effective to use ozonation process after the removal of cyanobacterial cells in advance.

The Beating Properties of High Yield Pulp Treated with Ozone(II) (오존처리 고수율 펄프의 고해 특성(II) -고해 후 발생된 미세섬유의 리그닌 분포-)

  • 윤승락
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • This research was conducted to investigate the morphological characteristics of fine fibers produced during beating process of high yield pulp treated with ozone and the distribution of lignin in the produced fine fibers. Thermomechanical(TMP) pulp and chemithermomechanical(CTMP) pulp of spruce and CTMP of white birch were beaten to reach 200$m\ell$ CSF, and then the fine fibers were observed using ultraviolet microscope. The fine fibers produced from TMP and CTMP of spruce using treated with ozone for 15 minutes were fragments of fiber surfaces or cell corners, and most of them contained lignin. However, lignin was not observed in the fibers after 15 minutes of ozone treatment. The fine fibers produced from CTMP of white birch were broken pieces or fragments of fiber surfaces or cell corners. The lignin was observed in the fibers until 5min of ozone treatment but no lignin was observed after 5 minutes of ozone treatment. Different morphological characteristics of TMP and CTMP explained both the different morphological characteristics and the distribution of lignin observed in the fine fibers produced from the beating process of TMP and CTMP treated with ozone.

Livestock Wastewater Treatment Using the DOF and PO2 System with High Concentration of Ozone (고농도 오존을 적용한 DOF와 PO2 시스템의 축산폐수처리)

  • Lee, Byoung-Ho;Kim, Sung-Hyuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1162-1167
    • /
    • 2005
  • Livestock wastewater is known to be very difficult to treat because it contains highly non-biodegradable organic material. Thus the DOF(Dissolved Ozone Flotation) system and the PO2(Pressurized Ozone Oxidation) system were built at the livestock wastewater treatment plant, and characteristics of treatments were investigated in this paper. Suspended Solids(SS) removal efficiency was over 94% by DOF system. 90% of $COD_{Mn}$ was removed, from 620 mg/L down to 63 mg/L by the DOF-PO2 system. During the period of operation, $SCOD_{Cr}$ was removed an average of 82%, from 890 mg/L down to 160 mg/L. 96% of UV-254 absorbance was also removed. TP removal efficiency was over 98%, from 27 mg/L to 0.35 mg/L, and TN was also removed 68% along with suspended solids. It was possible to meet effluent standards of the livestock wastewater treatment plant by the DOF-PO2 system along with biological treatment.

Economy Analysis to Retrofit Ballast Water Treatment System for an Existing Vessel (선박 평형수 처리장치 선정을 위한 경제성 분석)

  • JEE, Jae-Hoon;PARK, Sang-Kyun;OH, Cheol
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1319-1328
    • /
    • 2016
  • Since Ballast Water Management Convention has been effected, BWTS, applied to new-building vessels and existing vessels, have been developed from many countries with various treatment methods. However, BWTS is mainly typed Electrolysis, Ozone and UV type. Approximately 70 products have been type approved by the Flag Administrations. For the new-building vessels, the vessels' design and construction have been considered for arrangements and installations for BWTS. However, existing vessels which already construction had finished have problem with selection of BWTS type for installation and arrangement. The selection of the most economized BWTS system is important though, CAPEX has not been made any significant differences. However, OPEX is more important factor. Consequently, detail analysis of OPEX is the key to the selection of the most economized BWTS system and also it can be the purpose of this study. The feasibility study on the main three type of BWTS (Electrolysis, Ozone and UV type) for 175K Bulk Carrier and 57K Cargo ship has been conducted for this study. Because, these three type of BWTS have been the most frequently installed and used and the two type of object vessels are consist of the 40% of the world merchant ship market. For this study, interest rate, project duration (operation time after installation), maintenance cost and fuel oil price are considered as major factor of feasibility study. In addition, expecting Interest rates to sensitivity analysis conducted for more accurate feasibility study. For 175K Bulk carrier, ozone treatment system is more economical than other types. For 57K cargo ship, UV type is considered more economical than other types. However, it is concluded that electrolysis type is more suitable compare to installation space, total weight and electrical power consumption.

The Study of VOCs Decomposition Characteristics Using UV Photolysis Process (휘발성유기화합물의 광분해 제거 특성에 관한 연구)

  • 서정민;정창훈
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.743-748
    • /
    • 2002
  • UV photolysis process is little known in parts of air pollution treatment, so there are not many applications in field. Therefore we have to do more experiment and study application possibility for treatment of VOCs(Volatile organic compounds). To solve these problems, we have been studying for simultaneous application of this technology. It has shown that concentration of TCE and B.T.X., diameter of reactor and wavelength of lamp have effected on decomposition efficiency. Analysis of TCE and B.T.X. concentration was carried out by GC-FID. A cylinderical reactor consisting of a quartz tube and a centrally located lamp(${\psi}25mm$) was used. The length and diameter of reactor were 1800mm, 75mm. It has shown that the generated ozone concentration goes up 250ppm when using 64watt ozone lamp. When using Photolysis process only, the rates of fractional conversion of each material are TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. This phenomenon can be rationalized in terms of the different bond energy that indicates how easily VOCs species can be decomposed.