• Title/Summary/Keyword: UF (Ultra Filtration)

Search Result 27, Processing Time 0.026 seconds

Treatment of Garbage Leachate with Two-phase Anaerobic Digestion Coupled with Ultra Filtration (막결합형 2상 혐기성 소화 공정을 이용한 음식물 탈리액 처리)

  • Lee, Eun-Young;Kim, Hyung-Kuk;Giang, Luu Thi Thuy;Bae, Jae-Ho;Bae, Young-Shin;Won, Jong-Choul;Lee, Jae-Hoon;Park, Seung-Kyun;Cho, Yong-Wan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.997-1006
    • /
    • 2009
  • Organic removal efficiency and methane production rate, a feasibility of power generation from biogas, and the optimum conditions for membrane operation were evaluated for the pilot scale (5 tons/day) two-phase anaerobic digestion coupled with ultra filtration (TPADUF) system fed with garbage leachate. The TPADUF system is consisted of a thermophilic acidogenic reactor, a mesophilic methanogenic reactor, and an UF membrane. When garbage leachate with 150 g/L of TCOD was fed to the TPADUF up to organic loading rate (OLR) of 11.1 g COD/L/d, the effluent TCOD was lower than 6 g/L and the average removal efficiencies of TCOD and SCOD were higher than 95%. The methane composition of the gas was 65%, and the methane yield was 39 $m^3/m^3$ garbage leachatefed, 260 $m^3$/tons $COD_{added}$, or 270 $m^3$/tons $COD_{removed}$, even there was some gas leak. The power production per consumed gas was 0.96 kWh/$m^3$ gas or 1.49 kWh/$m^3$ methane. This lower power production efficiency mainly due to the small capacity of gas engine (15 kW class). The membrane was operated at the average flux of 10 L/$m^2$/hr. When the flux decreased, washing with water and chemical (NaOCl) was conducted to restore the flux. In the TPADUF system, optimum pH could be maintained without alkali addition by recycling the membrane concentrate or mixed liquor of the methanogenic digester to the acidogenic reactor. Also, partial production of methane in the acidogenic reactor had a positive effect on lowering the OLR of the methanogenic reactor.

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.

Analysis of Membrane Integrity and Removal Efficiency Considering Membrane Defect and Pore Size (막 파단 및 공극크기에 따른 막 완결성 및 제거효율 분석)

  • Hur, Hyun-chul;Rhee, Ok-jae;Lee, Kwang-jae;Kim, Kwang-ho;Choi, Young-june;Lee, Joo-hee;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.423-429
    • /
    • 2008
  • Microfiltration (MF) and ultrafiltration (UF) processes for removal of particulate materials (i.e., turbidity, microorganisms and viruses) have been used to produce drinking water with higher quality. As membrane filtration technique has become widely applied for drinking water treatment, the importance of membrane integrity test (MIT) has also been increasingly emphasized. The results of pressure decay test (PDT) were presented in the paper to monitor membrane integrity. In this paper the PDT was carried out with deliberately-defected membrane fibers to evaluate the sensitivity of PDT on membrane fiber damage. Variation of pressure decay rate and removal rate were investigated to evaluate the impact of defection (defection ratio) and pore size of membrane. The membrane integrity could be successfully monitored by the PDT. The pressure decay rate varied from $0.002{\sim}0.189kg_f/cm^2hr$ with the initial pressure ranged from 0.2 to $1.0kg_f/cm^2hr$. Higher initial pressure which provided with higher pressure decay rate was preferred to evaluate the defection of membrane fiber. As for the particle removal rate, the Log Removal Rate (LRV) of kaolin solution decreased significantly from 3.78 to 2.31 when one fiber out of 3,200 fibers was cut. The membranes with different pore size were tested to evaluate virus removal efficiency. The virus removal rate of the MF membrane ($0.1{\mu}m$) was about 30% although the poliovirus was smaller than the pore size of the MF membrane, indicating that the removal rate was much lower than Korea Water Works Association (KWWA) certificate LRV of 1.5.

Extraction of Glycosaminoglycans from Styela clava Tunic (미더덕 껍질로부터 Glycosaminoglycans의 추출)

  • 안삼환;정성훈;강석중;정태성;최병대
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.180-185
    • /
    • 2003
  • Glycosaminoglycans (GAGS was extracted from sea squirt, Styela clava with sodium phosphate at 105$^{\circ}C$ for 2 hr and deproteinized with trichloroacetic acid or hydrochloride. The GAGs obtained from tunic consist 41.7% crude carbohydrates, 31.8% crude protein, and 31.2% sulfate. It was mainly constituted of galactose, glucosamine, glucose, mannose, and glacrosamine. The prominent amino acid were phenylalanine, threonine, glutamic acid, and aspartic acid. Mineral contents was mainly constituted 3.0 mg% sodium, 1.6 mg% potassium, and 1.2 mg% phosphorus. Trichloroacetic acid, hydrochloride and 5-sulfosalicylic acid were used for deprotein of the GAGs. Effective volume for deprotein of crude GAGs were 5.0% trichloroacetic acid (w/v) and 10.0% HCI (v/v) treatment. The deproteinized GAGs contained 35.1%, 35.4% of protein and 22.0%, 18.5% of sulfate, respectively.

Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein (난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발)

  • Kang Byung Chul;Lee Kwang Hyun
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.9-14
    • /
    • 2005
  • Batch enzymatic hydrolysis of egg yolk protein by protease was carried out at laboratory scale coupled to an ultrafiltration module. Effect of ethanol concentrations on the performance of enzymatic hydrolysis was studied to determine the optimum condition of recovery of hydrolysate. The enzymatic hydrolysis was conducted stepwise with following conditions, $50^{\circ}C$, pH 10.0 and pH 6.5. Ethanol concentration was changed from 10 to $40\%$ (w/w). As ethanol concentration was increased, the recovery yield of total solid and protein in enzymatic hydrolysate was also increased. The content of sialic acid and protein in hydrolysate was independent of ethanol concentration. We also investigated the effect of ethanol concentration on the performance of ultrafiltration. As the concentration of ethanol in yolk protein was increased, the recovery yield of product was increased. Ultra­filtration of egg yolk protein hydrolysate was conducted to increase the content of sialic acid. Four ultrafiltation modules were used in this study, and we evaluated the performance of the UF modules. When Amicon module was used, the recovery percentage of total solid in retentate was $6.0\%$, which is the highest among the modules used. In spite of the difference in the recovery yield of total solid, the purity of sialic acid in retentate was about $2.0\%$, which was 5 times higher than that in feed. It was concluded that the recovery yield and the purity of sialic acid did not correlate with the types of modules and the size of MWCO.

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Effects of Concentrated Pig Slurry Using Membrane Filter on the Growth and Yield of Tomato in Nutriculture (막분리 돈분뇨 농축액비를 이용한 양액재배가 토마토의 생육과 수량에 미치는 영향)

  • Ryoo, Jong-Won;Seo, Woon-Kab
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2008
  • This experiment was conducted to investigate the effects of concentrated pig slurry using membrane filter on growth of tomato in nutriculture. Pig slurry was filtered by ultra filtration and concentrated by reverse osmosis process. Filtration of pig slurry was necessary to prevent the hose clogging in nutriculture. The concentrated pig slurry (CS) and nutrient solution (NS) were mixed by six different mixing ratios of 0:100, 20:80, 40:60, 60:40%, 80: 20 and 100%:0% based on nitrogen content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of tomato. The concentration of nutrient solution was adjusted a range of $1.6{\sim}2.0mS/cm$ in EC. The plant height of tomato treated with CS 20+NS 80% was similar with NS 100% control plot. Plant height was highest in the plot of CS 20+NS 80%. The treatment of 100% concentrated pig slurry was lowest in the gowth characteristics of tomato. Number of cluster was very lower in 100% concentrated pig slurry compared with plot of chemical nutrient solution. In the beginning of growth stage, SPAD reading value was reduced in plot treated with CS 100%, but CS 20+NS 80% plot was higher compared to 100% concentrated pig slurry. SPAD value of tomato leaves was decreased as the amount of CS was increased. The SPAD value also in treatment of concentrated pig slurry was lower in the middle growth stage compared to control plot. The dry weight of stem and leaf were 107.4, 104.2g in plot of NS 100% and CS 20%+NS 80%, respectively. The fruit number and weight were decreased at high application plots of concentrated pig slurry, The fruit setting of tomato showed lowest in the plot treated with 100% concentrated pig slurry, and the growth of tomato severely decreased after application of 100% CS treatment. In conclusion, the growth characteristics such as plant height and fruit weight of tomato were not significantly different between the plots treated with mixture of 20% CS +80%NS and 100% nutrient solution treatment. In conclusion, the mixture solution of 20% of concentrated pig slurry and 80% of nutrient solution could be used as a nutrition solution of tomato nuticulture.

  • PDF