• Title/Summary/Keyword: UDEC

Search Result 54, Processing Time 0.026 seconds

A Study on Discontinuum Analysis and Continuum Analysis of Tunnels in Jointed Rock Mass (절리발달 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Cho Sun-Kyu;Kim Si-Kyeok;Kim Do-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1089-1094
    • /
    • 2004
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two method : discontinuous model and continuum model. Generally, distinct element method (DEM) is applied in discontinuous model, and finite element method (FEM) or finite difference method (FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests is conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC is utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.

  • PDF

A Study on Application Range of Continuum Model to Discontinuous Rock mass with Numerical Analysis (불연속지반의 연속체 모델 적용범위에 대한 수치해석적 연구)

  • 이경우;노상림;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.197-204
    • /
    • 2002
  • In this study, multivariate analysis based on domestic data(958 EA) of road tunnel, and suggest the easy prediction equation of Q-system. We generate applicable Q-value to numerical analysis method with using the equation and investigate the behavior as variable Q-value of rock mass induced excavation with discontinuum numerical analysis method, UDEC. In the result of the experiment, we research the application range of Q-value to apply the continuum model to discontinuous rock mass is below 0.7 and we testify the applicability of continuum model as researched Q-value with continuum numerical analysis method, FLAC.

  • PDF

A Study on the Structural Behavior of an Underground Radwaste Repository within a Granitic Rock Mass with a Fault Passing through the Cavern Roof (화장암반내 단층지역에 위치한 지하 방사성폐기물 처분장 구조거동연구)

  • 김진웅;강철형;배대석
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.257-269
    • /
    • 2001
  • Numerical simulation is performed to understand the structural behavior of an underground radwaste repository, assumed to be located at the depth of 500 m, in a granitic rock mats, in which a fault intersects the roof of the repository cavern. Two dimensional universal distinct element code, UDEC is used in the analysis. The numerical model includes a granitic rock mass, a canister with PWR spent fuels surrounded by the compacted bentonite inside the deposition hole, and the mixed bentonite backfilled in the rest of the space within the repository cavern. The structural behavior of three different cases, each case with a fault of an angle of $33^{\circ},\;45^{\circ},\;and\;58^{\circ}$ passing through the cavern roof-wall intersection, has been compared. And then fro the case with the $45^{\circ}$ fault, the hydro-mechanical, thermo-mechanical, and thermo-hydro-mechanical interaction behavior have been studied. The effect of the time-dependent decaying heat, from the radioactive materials in PWR spent fuels, on the repository and its surroundings has been studied. The groundwater table is assumed to be located 10m below the ground surface, and a steady state flow algorithm is used.

  • PDF

A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling (고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링)

  • Park, Seunghun;Kwon, Sangki;Lee, Changsoo;Lee, Jaewon;Yoon, Seok;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.109-135
    • /
    • 2020
  • Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

Stability Analysis of a Jointed Rock Slope with the Barton-Bandis Joint Constitute Model Using UDEC (Barton-Bandis joint model을 이용한 절리 암반 사면의 안정성 해석)

  • 최성웅;정소걸
    • Tunnel and Underground Space
    • /
    • v.9 no.2
    • /
    • pp.141-148
    • /
    • 1999
  • Distinct element simulation in jointed rock masses is largely dependent upon the joint constitutive equation used. This paper describes the differences between the Barton-Bandits (BB) and the Mohr-Coulomb (MC) joint constitutive models for the stability analysis of the jointed rock slopes. The BB model, which allows the modelling of the dilation accompanying shear, predicts results very similar to the present condition of slopes. Consequently the 10 cm thick shotcrete was proposed for the reinforcement of those slopes. The MC model, however, in which the dilation angle is constant, is relatively insensitive to the behaviors of joints.

  • PDF

A REVIEW OF THE ROCK MECHANICAL AND ENGINEERING GEOLOGICAL RESEARCH AT GJOVIK OLYMPIC CAVERN (GJOEVIK올림픽 경기장(암반역학 및 지질공학 분야))

  • Barton, N.;By, T.L.;Chryssanthakis, P.;Tunbridge, L.;Kristiansen, J.;Loset, F.;Bhasin, R.K.;Westerdahl, H.;Vik, G.;Myrvang, A.;Hansen, S.E.;Lv, Ming;Stjern, G.;Ruistven, H.;Kjorholt, H.;Lee, M.S.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.235-247
    • /
    • 1993
  • The 62 m span Olympic lee Hockey cavern in Gjovik, Norway, is located in jointed gneiss of average RaD = 70% and has a rock cover of only 25 to 50m, thus posing challenging design p problems. The investigations prior to construction included two types of stress measurements, cross-hole seismic tomography, special coe logging, Q-system classification and numerical modelling with UDEC-BB. Predicted maximum deformations were 4 to 8 mm; surprisingly small due to the high horizontal stresses recorded. Extensometer (MPBX) installations from the surface prior to construction, precision surface levelling and MPBX installed from inside the cavern give a combined measure of maximum deformations in the range 7 to 8 mm with the 62 m span fully e excavated, and three adjacent caverns for the Postal Services also completed.

  • PDF

New techniques for estimating the shut-in pressure in hydro-fracturing pressure-time curves

  • Choi Sung O.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.272-280
    • /
    • 2003
  • A definite shut-in pressure in hydraulic fracturing techniques is needed for obtaining the correct information on the in-situ stress regimes in rock masses. The relation between the behaviour of hydraulically induced fractures and the condition of remote stress is considered to be major reasons of an ambiguous shut-in pressure in hydraulic fracturing pressure-time history curves. This paper describes the results of a series of numerical analyses carried out using UDEC(Universal Distinct Element Code, Itasca), which is based on the discrete element method, to compare several methods for determining the shut-in pressure during hydraulic fracturing. The fully coupling of hydraulic and mechanical analysis was applied, and the effects of four different discontinuity geometries in numerical modelling have been investigated for this purpose. The effects of different remote stress regimes and different physical properties on hydraulic fracture propagation have been also analyzed. Several methods for obtaining shut-in pressure from the ambiguous shut-in curves have been applied to all the numerical models. The graphical intersection methods, such as (P vs. t) method, (P vs. log(t)) method, (log(P) vs. log(t)) method, give smaller values of the shut-in pressure than the statistical method, (dP/dt vs. P). Care should be taken in selecting a method for shut-in pressure, because there can be existed a stress anomaly around the wellbore and fracturing from the wellbore by a constant flow rate may have a more complicate mechanism.

  • PDF

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

Slope stability associated with construction (건설공사와 사면 안정성)

  • Baek, Yong;Kim, Gyo-Won;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.1-17
    • /
    • 2000
  • In this study, 270 cut-slopes are investigated and statistical analyses are performed. More than 84% of unstable slopes are rock slopes or rock-soil mixed slopes, and 72% of the slopes have 10 to 30 meter in height. And in order to clarify the cause of failure, 3 slopes which have been failed are back-analysed by using the computer programs such as DIPS, UDEC and PCSTABL5M. A heavy rainfall during rainy season is a main cause of slope failure, and a blasting vibration during construction could also give a significant influence on the slope instability.

  • PDF

A Study on Continous and Discontinous Analysis of Tunnels in Jointed Rock Mass (절리 암반터널의 불연속체해석과 연속체해석에 관한 고찰)

  • Lee Joung-Sun;Kim Si-Kyeok;Kim Do-Hoon;Jung Jae-Dong
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2005
  • Numerical methods to estimate behaviors of jointed rock mass can be roughly divided into two methods : continuous and discontinuous model. Generally, distinct element method(DEM) is applied in discontinuous model, and finite element method(FDM) or finite difference method(FDM) is utilized in continuum model. To predict a behavior of discontinuous model by DEM, it is essential to understand characteristics of joints developed in rock mass through field tests. However, results of field tests can not provide full information about rock mass because field tests are conducted in limited area. In this paper, discontinuous analysis by UDEC and continuous analysis by FLAC are utilized to estimate a behavior of a tunnel in jointed rock mass. For including discontinuous analysis in continuous analysis, joints in rock mass is considered by reducing rock mass properties obtained by RMR and decreasing shear strength of rock mass. By comparing and revising two analysis results, analysis results similar with practical behavior of a tunnel can be induced and appropriate support system is decided.