• Title/Summary/Keyword: UCI machine learning repository

Search Result 57, Processing Time 0.024 seconds

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

A Sparse Data Preprocessing Using Support Vector Regression (Support Vector Regression을 이용한 희소 데이터의 전처리)

  • Jun, Sung-Hae;Park, Jung-Eun;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.789-792
    • /
    • 2004
  • In various fields as web mining, bioinformatics, statistical data analysis, and so forth, very diversely missing values are found. These values make training data to be sparse. Largely, the missing values are replaced by predicted values using mean and mode. We can used the advanced missing value imputation methods as conditional mean, tree method, and Markov Chain Monte Carlo algorithm. But general imputation models have the property that their predictive accuracy is decreased according to increase the ratio of missing in training data. Moreover the number of available imputations is limited by increasing missing ratio. To settle this problem, we proposed statistical learning theory to preprocess for missing values. Our statistical learning theory is the support vector regression by Vapnik. The proposed method can be applied to sparsely training data. We verified the performance of our model using the data sets from UCI machine learning repository.

UCI Sensor Data Analysis based on Data Visualization (데이터 시각화 기반의 UCI Sensor Data 분석)

  • Chang, Il-Sik;Choi, Hee-jo;Park, Goo-man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.21-24
    • /
    • 2020
  • 대용량의 데이터를 시각적 요소를 활용하여 눈으로 볼 수 있도록 하는 데이터 시각화에 대한 관심이 꾸준히 증가하고 있다. 데이터 시각화는 데이터의 전처리를 거쳐 차원 축소를 하여 데이터의 분포를 시각적으로 확인할 수 있다. 공개된 데이터 셋은 캐글(kaggle), 아마존 AWS 데이터셋(Amazon AWS datasets), UC 얼바인 머신러닝 저장소(UC irvine machine learning repository)등 다양하다. 본 논문에서는 UCI의 화학 가스의 데이터셋을 이용하여 딥러닝을 이용하여 다양한 환경 및 조건에서의 학습을 통한 데이터분석 및 학습 결과가 좋을 경우와 그렇지 않을 경우의 마지막 레이어의 특징 벡터를 시각화하여 직관적인 결과를 확인 가능 하도록 하였다. 또한 다차원 입력 데이터를 시각화 함으로써 시각화 된 결과가 딥러닝의 학습결과와 연관이 있는지를 확인 한다.

  • PDF

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.1-11
    • /
    • 2023
  • Breast cancer is the disease that affects women the most worldwide. Due to the development of computer technology, the efficiency of machine learning has increased, and thus plays an important role in cancer detection and diagnosis. Deep learning is a field of machine learning technology based on an artificial neural network, and its performance has been rapidly improved in recent years, and its application range is expanding. In this paper, we propose a DNN-SVM hybrid model that combines the structure of a deep neural network (DNN) based on transfer learning and a support vector machine (SVM) for breast cancer classification. The transfer learning-based proposed model is effective for small training data, has a fast learning speed, and can improve model performance by combining all the advantages of a single model, that is, DNN and SVM. To evaluate the performance of the proposed DNN-SVM Hybrid model, the performance test results with WOBC and WDBC breast cancer data provided by the UCI machine learning repository showed that the proposed model is superior to single models such as logistic regression, DNN, and SVM, and ensemble models such as random forest in various performance measures.

Ensemble Learning of Region Based Classifiers (지역 기반 분류기의 앙상블 학습)

  • Choe, Seong-Ha;Lee, Byeong-U;Yang, Ji-Hun;Kim, Seon-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.267-270
    • /
    • 2007
  • 기계학습에서 분류기들의 집합으로 구성된 앙상블 분류기는 단일 분류기에 비해 정확도가 높다는 것이 입증되었다. 본 논문에서는 새로운 앙상블 학습으로서 데이터의 지역 기반 분류기들의 앙상블 학습을 제시하여 기존의 앙상블 학습과의 비교를 통해 성능을 검증하고자 한다. 지역 기반 분류기의 앙상블 학습은 데이터의 분포가 지역에 따라 다르다는 점에 착안하여 학습 데이터를 분할하고 해당하는 지역에 기반을 둔 분류기들을 만들어 나간다. 이렇게 만들어진 분류기들로부터 지역에 따라 가중치를 둔 투표를 하여 앙상블 방법을 이끌어낸다. 본 논문에서 제시한 앙상블 분류기의 성능평가를 위해 UCI Machine Learning Repository에 있는 11개의 데이터 셋을 이용하여 단일 분류기와 기존의 앙상블 분류기인 배깅과 부스팅등의 정확도를 비교하였다. 그 결과 기본 분류기로 나이브 베이즈와 SVM을 사용했을 때 새로운 앙상블 방법이 다른 방법보다 좋은 성능을 보이는 것을 알 수 있었다.

  • PDF

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

Plurality Rule-based Density and Correlation Coefficient-based Clustering for K-NN

  • Aung, Swe Swe;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.183-192
    • /
    • 2017
  • k-nearest neighbor (K-NN) is a well-known classification algorithm, being feature space-based on nearest-neighbor training examples in machine learning. However, K-NN, as we know, is a lazy learning method. Therefore, if a K-NN-based system very much depends on a huge amount of history data to achieve an accurate prediction result for a particular task, it gradually faces a processing-time performance-degradation problem. We have noticed that many researchers usually contemplate only classification accuracy. But estimation speed also plays an essential role in real-time prediction systems. To compensate for this weakness, this paper proposes correlation coefficient-based clustering (CCC) aimed at upgrading the performance of K-NN by leveraging processing-time speed and plurality rule-based density (PRD) to improve estimation accuracy. For experiments, we used real datasets (on breast cancer, breast tissue, heart, and the iris) from the University of California, Irvine (UCI) machine learning repository. Moreover, real traffic data collected from Ojana Junction, Route 58, Okinawa, Japan, was also utilized to lay bare the efficiency of this method. By using these datasets, we proved better processing-time performance with the new approach by comparing it with classical K-NN. Besides, via experiments on real-world datasets, we compared the prediction accuracy of our approach with density peaks clustering based on K-NN and principal component analysis (DPC-KNN-PCA).

Finding Unexpected Test Accuracy by Cross Validation in Machine Learning

  • Yoon, Hoijin
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.549-555
    • /
    • 2021
  • Machine Learning(ML) splits data into 3 parts, which are usually 60% for training, 20% for validation, and 20% for testing. It just splits quantitatively instead of selecting each set of data by a criterion, which is very important concept for the adequacy of test data. ML measures a model's accuracy by applying a set of validation data, and revises the model until the validation accuracy reaches on a certain level. After the validation process, the complete model is tested with the set of test data, which are not seen by the model yet. If the set of test data covers the model's attributes well, the test accuracy will be close to the validation accuracy of the model. To make sure that ML's set of test data works adequately, we design an experiment and see if the test accuracy of model is always close to its validation adequacy as expected. The experiment builds 100 different SVM models for each of six data sets published in UCI ML repository. From the test accuracy and its validation accuracy of 600 cases, we find some unexpected cases, where the test accuracy is very different from its validation accuracy. Consequently, it is not always true that ML's set of test data is adequate to assure a model's quality.

Distributed Genetic Algorithm using Automatic Migration Control (분산 유전 알고리즘에서 자동 마이그레이션 조절방법)

  • Lee, Hyun-Jung;Na, Yong-Chan;Yang, Ji-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.157-162
    • /
    • 2010
  • We present a new distributed genetic algorithm that can be used to extract useful information from distributed, large data over the network. The main idea of the proposed algorithms is to determine how many and which individuals move between subpopulations at each site adaptively. In addition, we present a method to help individuals from other subpopulations not be weeded out but adapt to the new subpopulation. We used six data sets from UCI Machine Learning Repository to compare the performance of our approach with that of the single, centralized genetic algorithm. As a result, the proposed algorithm produced better performance than the single genetic algorithm in terms of the classification accuracy with the feature subsets.

Application of Random Forest Algorithm for the Decision Support System of Medical Diagnosis with the Selection of Significant Clinical Test (의료진단 및 중요 검사 항목 결정 지원 시스템을 위한 랜덤 포레스트 알고리즘 적용)

  • Yun, Tae-Gyun;Yi, Gwan-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1058-1062
    • /
    • 2008
  • In clinical decision support system(CDSS), unlike rule-based expert method, appropriate data-driven machine learning method can easily provide the information of individual feature(clinical test) for disease classification. However, currently developed methods focus on the improvement of the classification accuracy for diagnosis. With the analysis of feature importance in classification, one may infer the novel clinical test sets which highly differentiate the specific diseases or disease states. In this background, we introduce a novel CDSS that integrate a classifier and feature selection module together. Random forest algorithm is applied for the classifier and the feature importance measure. The system selects the significant clinical tests discriminating the diseases by examining the classification error during backward elimination of the features. The superior performance of random forest algorithm in clinical classification was assessed against artificial neural network and decision tree algorithm by using breast cancer, diabetes and heart disease data in UCI Machine Learning Repository. The test with the same data sets shows that the proposed system can successfully select the significant clinical test set for each disease.