• Title/Summary/Keyword: U/F System

Search Result 243, Processing Time 0.029 seconds

UNIQUENESS AND MULTIPLICITY OF SOLUTIONS FOR THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.139-146
    • /
    • 2008
  • We investigate the uniqueness and multiplicity of solutions for the nonlinear elliptic system with Dirichlet boundary condition $$\{-{\Delta}u+g_1(u,v)=f_1(x){\text{ in }}{\Omega},\\-{\Delta}v+g_2(u,v)=f_2(x){\text{ in }}{\Omega},$$ where ${\Omega}$ is a bounded set in $R^n$ with smooth boundary ${\partial}{\Omega}$. Here $g_1$, $g_2$ are nonlinear functions of u, v and $f_1$, $f_2$ are source terms.

  • PDF

THE STUDY OF THE SYSTEM OF NONLINEAR WAVE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.261-267
    • /
    • 2007
  • We show the existence of the positive solution for the system of the following nonlinear wave equations with Dirichlet boundary conditions $$u_{tt}-u_{xx}+av^+=s{\phi}_{00}+f$$, $$v_{tt}-v_{xx}+bu^+=t{\phi}_{00}+g$$, $$u({\pm}\frac{\pi}{2},t)=v({\pm}\frac{\pi}{2},t)=0$$, where $u_+=max\{u,0\}$, s, $t{\in}R$, ${\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}=1$ of the eigenvalue problem $u_{tt}-u_{xx}={\lambda}_{mn}u$ with $u({\pm}\frac{\pi}{2},t)=0$, $u(x,t+{\pi})=u(x,t)=u(-x,t)=u(x,-t)$ and f, g are ${\pi}$-periodic, even in x and t and bounded functions in $[-\frac{\pi}{2},\frac{\pi}{2}]{\times}[-\frac{\pi}{2},\frac{\pi}{2}]$ with $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f{\phi}_{00}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}g{\phi}_{00}=0$.

  • PDF

On the continuity of the map induced by scalar-input control system

  • Shin, Chang-Eon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.695-706
    • /
    • 1996
  • In the control system $ \dot{x} = f(t,x(t)) + g(t,x(t))\dot{u}, x(0) = \bar{x}, t \in [0,T], $ this paper shows that the map from u with $L^1(m)$-topology to $x_u$ with $L^1(\mu)$-topology is Lipschitz continuous where f is $C^1$, $\mu$ is the Stieltjes measure derived from the function g which is not smooth in the variable t and $x_u$ is the solution of the above system corresponding to u under the assumption that $\dot{u}$ is bounded.

  • PDF

NONTRIVIAL SOLUTIONS FOR AN ELLIPTIC SYSTEM

  • Nam, Hyewon;Lee, Seong Cheol
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.153-161
    • /
    • 2015
  • In this work, we consider an elliptic system $$\left{\array {-{\Delta}u=au+bv+{\delta}_1u+-{\delta}_2u^-+f_1(x,u,v) && in\;{\Omega},\\-{\Delta}v=bu+cv+{\eta}_1v^+-{\eta}_2v^-+f_2(x,u,v) && in\;{\Omega},\\{\hfill{70}}u=v=0{\hfill{90}}on\;{\partial}{\Omega},}$$, where ${\Omega}{\subset}R^N$ be a bounded domain with smooth boundary. We prove that the system has at least two nontrivial solutions by applying linking theorem.

MULTIPLICITY RESULTS FOR THE WAVE SYSTEM USING THE LINKING THEOREM

  • Nam, Hyewon
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.203-212
    • /
    • 2013
  • We investigate the existence of solutions of the one-dimensional wave system $$u_{tt}-u_{xx}+{\mu}g(u+v)=f(u+v)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}-v_{xx}+{\nu}g(u+v)=f(u+v)\;\;in\;(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ with Dirichlet boundary condition. We find them by applying linking inequlaities.

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR KIRCHHOFF-SCHRÖDINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES

  • Che, Guofeng;Chen, Haibo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1551-1571
    • /
    • 2020
  • This paper is concerned with the following Kirchhoff-Schrödinger-Poisson system $$\begin{cases} -(a+b{\displaystyle\smashmargin{2}\int\nolimits_{\mathbb{R}^3}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+{\mu}{\phi}u={\lambda}f(x){\mid}u{\mid}^{p-2}u+g(x){\mid}u{\mid}^{p-2}u,&{\text{ in }}{\mathbb{R}}^3,\\-{\Delta}{\phi}={\mu}{\mid}u{\mid}^2,&{\text{ in }}{\mathbb{R}}^3, \end{cases}$$ where a > 0, b, µ ≥ 0, p ∈ (1, 2), q ∈ [4, 6) and λ > 0 is a parameter. Under some suitable assumptions on V (x), f(x) and g(x), we prove that the above system has at least two different nontrivial solutions via the Ekeland's variational principle and the Mountain Pass Theorem in critical point theory. Some recent results from the literature are improved and extended.

AN EXISTENCE OF THE INERTIAL MANIFOLD FOR NEW DOMAINS

  • Kwean, Hyuk-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.693-707
    • /
    • 1996
  • Consider a specific class of scalar-valued reaction diffusion equations of the form $$ (1.1) u_t = \nu\Delta u + f(u), u \in R $$ where $\nu$ < 0 is viscosity parameter and $f : R \to R$ is sufficiently smooth.

  • PDF

A study on the flexo printing wastewater treatment and recycling (Flexo 인쇄폐수의 처리 및 재활용에 관한 연구)

  • Jun, Yang-Ba;Hur, Hun;Cho, Kemin;Bae, Woo-Kun
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Printing process generates a vast amount of toxical waste and wastewater by the development of printing and publishing industry. The regulations for various environmental pollution material, which were indispensably used in printing industries, were getting stronger. The printing industries should develop the cleaner technologies in order to avoid the regulations. In this paper, the separation characteristics of microfiltration, ultrafiltration, reverse osmosis were surveyed to make basic data for the optimization of process as cleaner technologies for printing industries. The $2kg/cm^2$ of operation pressure were suitable to the U/F System. Because of the permeate of U/F was below 3 NTU as turbidity, which was probed to be possible using the rinsing water in printing process. U/F System,

  • PDF

On the Linearization of the Discrete-time Nonlinear Systems, $x_{k+1}=G_{u_k}{o}F{(x_k)}$ (비선형 이산 시간 시스템 $x_{k+1}=G_{u_k}{o}F{(x_k)}$ 의 선형화에 관하여)

  • Nam, Kwang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.125-128
    • /
    • 1987
  • We investigate the feedback linearizability of nonlinear discrete-time system s of a specific form, $x_k=G_{u_k}oF(x_k)$ where F is a diffeomorphism and [$G_{u_k}$] forms an one parameter group of diffeomorphisms. This structure represents a class of systems which are state equivalent to linear ones and approximates the sampled data model of a continuous-time system. It is also considered a relationship between linearizability and discretization.

  • PDF