• Title/Summary/Keyword: Tyrosine Kinase

Search Result 538, Processing Time 0.027 seconds

Development of High-specificity Antibodies against Renal Urate Transporters Using Genetic Immunization

  • Xu, Guoshuang;Chen, Xiangmei;Wu, Di;Shi, Suozhu;Wang, Jianzhong;Ding, Rui;Hong, Quan;Feng, Zhe;Lin, Shupeng;Lu, Yang
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.696-702
    • /
    • 2006
  • Recently three proteins, playing central roles in the bidirectional transport of urate in renal proximal tubules, were identified: two members of the organic anion transporter (OAT) family, OAT1 and OAT3, and a protein that designated renal urate-anion exchanger (URAT1). Antibodies against these transporters are very important for investigating their expressions and functions. With the cytokine gene as a molecular adjuvant, genetic immunization-based antibody production offers several advantages including high specificity and high recognition to the native protein compared with current methods. We fused high antigenicity fragments of the three transporters to the plasmids pBQAP-TT containing T-cell epitopes and flanking regions from tetanus toxin, respectively. Gene gun immunization with these recombinant plasmids and two other adjuvant plasmids, which express granulocyte/macrophage colony-stimulating factor and FMS-like tyrosine kinase 3 ligand, induced high level immunoglobulin G antibodies, respectively. The native corresponding proteins of URAT1, OAT1 and OAT3, in human kidney can be recognized by their specific antibodies, respectively, with Western blot analysis and immunohistochemistry. Besides, URAT1 expression in Xenopus oocytes can also be recognized by its corresponding antibody with immuno-fluorescence. The successful production of the antibodies has provided an important tool for the study of UA transporters.

Posttranscriptional deregulation of Src due to aberrant miR34a and miR203 contributes to gastric cancer development

  • Hao, Qiang;Lu, Xiaozhao;Liu, Nannan;Xue, Xiaochang;Li, Meng;Zhang, Cun;Qin, Xin;Li, Weina;Shu, Zhen;Song, Bin;Wang, Qing;Song, Liqiang;Zhang, Wei;Zhang, Yingqi
    • BMB Reports
    • /
    • v.46 no.6
    • /
    • pp.316-321
    • /
    • 2013
  • Gastric cancer remains the main cause of cancer death all around the world, and upregulated activation of the nonreceptor tyrosine kinase c-SRC (SRC) is a key player in the development. In this study, we found that expression of Src is also increased in clinical gastric cancer samples, with the protein level increased more significantly than that at the RNA level. Further study revealed that miR34a and miR203, two tumor suppressive miRNAs, inversely correlate with the expression of Src. Restoration of miR34a and miR203 decreased Src expression in gastric cancer cell lines, which in turn inhibited cell growth and cell migration. In summary, our study here revealed that posttranscriptional regulation of Src contributes to the deregulated cell growth and metastasis in gastric cancer, and targeting Src by miR34a or miR203 mimics would be a promising strategy in therapy.

Supplementing punicalagin reduces oxidative stress markers and restores angiogenic balance in a rat model of pregnancy-induced hypertension

  • Wang, Yujue;Huang, Mengwei;Yang, Xiaofeng;Yang, Zhongmei;Li, Lingling;Mei, Jie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.4
    • /
    • pp.409-417
    • /
    • 2018
  • Pre-eclampsia (PE) is a pregnancy disorder that is characterised by severe hypertension and increased risks of foetal and maternal mortality. The aetiology of PE not completely understood; however, maternal nutrition and oxidative stress play important roles in the development of hypertension. The treatment options for PE are currently limited to anti-hypertensive drugs. Punicalagin, a polyphenol present in pomegranate juice, has a range of bioactive properties. The effects of supplementation with punicalagin on angiogenesis and oxidative stress in pregnant rats with induced hypertension were investigated. The pregnant rats were randomly divided into five experimental groups (n=12 per group). Hypertension was induced using an oral dose of NG-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day) on days 14-19 of pregnancy. Punicalagin (25, 50 or 100 mg/kg) was given orally on days 14-21 of pregnancy. Punicalagin treatment at the tested doses significantly reduced diastolic, systolic, and mean arterial blood pressure in L-NAME treated rats from day 14. Punicalagin also restored angiogenic balance by increasing the expression of vascular endothelial growth factor and downregulating vascular endothelial growth factor receptor-1/fms-like tyrosine kinase-1. Punicalagin, significantly increased the placental nitric oxide levels as compared to PE group. The increased levels of oxidative stress in rats with PE were markedly decreased by treatment with punicalagin. Punicalagin at the tested doses markedly (p<0.05) enhanced the placental antioxidant capacity in L-NAME-treated rats. The raised catalase activity observed following L-NAME induction was significantly (p<0.05) and restored to normal activity levels in punicalagin treatment. Further, 100 mg dose of punicalagin exhibited higher protective effects as compared to lower doses of 25 and 50 mg. This study shows that supplementation with punicalagin decreased blood pressure and oxidative stress and restored angiogenic balance in pregnant rats with induced PE.

Effect of Bisphenol A on Insulin-Mediated Glucose Metabolism In Vivo and In Vitro

  • Ko, Jeong-Hyeon;Kang, Ju-Hee;Park, Chang-Shin;Shin, Dong-Wun;Kim, Ji-Hye;Kim, Hoon;Han, Seung-Baik
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.348-354
    • /
    • 2008
  • Bisphenol A (BPA), an environmental endocrine disrupter, enters the human body continuously in food and drink. Young children are likely to be more vulnerable than adults to chemical exposure due to the immaturities of their organ systems, rapid physical development, and higher ventilation, metabolic rates, and activity levels. The direct effect of BPA on peripheral tissue might also be of importance to the development of insulin resistance. However, the influence that BPA has on insulin signaling molecules in skeletal muscle has not been previously investigated. In this study, we examined the effect of BPA on fasting blood glucose (FBG) in post-weaned Wistar rats and on insulin signaling proteins in C2C12 skeletal muscle cells. Subsequently, we investigated the effects of BPA on insulin-mediated Akt phosphorylation in C2C12 myotubes. In rats, BPA treatment (0.1-1,000 ng/mL for 24 hours) resulted in the increase of FBG and plasma insulin levels, and reduced insulin-mediated Akt phosphorylation. Furthermore, the mRNA expression of insulin receptor (IR) was decreased after 24 hours of BPA treatment in C2C12 cells in a dose-dependent manner, whereas the mRNA levels of other insulin signaling proteins, including insulin receptor substrate-1 (IRS-1) and 5'-AMP-dependent protein kinase (AMPK), were unaffected. Treatment with BPA increased GLUT4 expression and protein tyrosine phosphatase 1B (PTP1B) activity in C2C12 myotubes, but not in protein levels. We conclude that exposure to BPA can induce insulin resistance by decreasing IR gene expression, which is followed by a decrease in insulin- mediated Akt activation and increased PTP1B activity.

EGFR Analysis in Cytologic Samples of Lung Adenocarcinoma by Microdissection (미세 절제에 의한 폐 선암 세포 검체에서 EGFR 분석)

  • Han, Jeong Yeon;Lee, Hoon Taek;Oh, Seo Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • The discovery of activating mutations in EGFR in a subset of lung adenocarcinomas was a major advance in our understanding of lung adenocarcinoma biology, and has led to groundbreaking studies that have demonstrated the efficacy of tyrosine kinase inhibitor therapy. Cytologic specimen procedures have become increasingly popular for obtaining diagnostic material in lung carcinomas. However, frequently the small amount of material or sparseness of tumor cells obtained from cytologic preparations limit the number of specialized studies, such as mutation analysis, that can be performed. In this study we used microdissection to isolate small numbers of tumor cells to assess for EGFR mutations from 76 cytological smear slides of patients with lung adenocarcinomas. We compared our results with previous molecular assays that had been performed on either surgical or cytology specimens as part of the patient's initial clinical work-up. Not only were we able to detect the identical EGFR mutation through the pyrosequencing, but we were also able to consistently detect the mutation from as few as 25 microdissected tumor cells. Furthermore, isolating a purer population of tumor cells resulted in increased sensitivity of mutation detection as we were able to detect mutations from microdissection-enriched cases. Therefore, microdissection can not only significantly increase the number of lung adenocarcinoma patients that can be screened for EGFR mutations, but can also facilitate the use of cytologic samples in the newly emerging field of molecular-based personalized therapies.

Molecular Biologic Analysis of c-kit Gene in Salivary Gland Carcinoma (타액선암에서 c-kit 유전자에 대한 분자생물학적 연구)

  • Seo Kyu-Hwan;Jung Kwang-Yoon;Woo Jung-Soo;Baek Seung-Kuk;Choi Sung-Bae;Kim Sang-Hee;Kim In-Sun;Kwon Soon-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Objectives: The c-kit gene encodes a transmembrane receptor-type tyrosine kinase, which is known to have a significant role in the normal migration and development of germ cells and melanocytes. In the previous studies of c-kit gene, c-kit expressions showed only in adenoid cystic carcinomas, lymphoepithelioma-like carcinomas and myoepithelial carcinomas, but not in others and mutation was not found in any types of salivary carcinoma. We investigate the c-kit expression which may be useful to differentiating adenoid cystic carcinomas from others, and mutation of the gene which may not be exist nor the mechanism of c-kit activation in salivary carcinomas. Material and Methods: The archival tissue samples from 42 salivary carcinomas of major and minor salivary glands were studied for c-kit expression by immunohistochemistry and gene mutation by polymerase chain reaction amplification and single strand conformational polymorphism. Results: The c-kit expressions were noted in 22/24 adenoid cystic carcinomas, 7/9 mucoepidermoid carcinomas, 2/3 acinic cell carcinomas, 3/4 malignant mixed tumors, and one undifferentiated carcinoma. The mutation of c-kit gene was found in 3/24 adenoid cystic carcinomas, 3/8 mucoepidermoid carcinomas, one acinic cell carcinoma, and 2/4 malignant mixed tumors. Conclusion: c-kit protein overexpression is seen in a variety of salivary gland carcinomas, and the mutation of the gene may be the mechanism of c-kit activation in these neoplasms.

Anti-cancer Activity of Paclitaxel, Lenvatinib and Radiation Combination Therapy on Anaplastic Thyroid Cancer in Vitro and in Vivo (Paclitaxel, Lenvatinib 및 방사선 병용 요법의 역형성 갑상선암에서의 항암 작용)

  • Jun, Shiyeol;Kim, Soo Young;Kim, Seok-Mo;Park, Ki Cheong;Kim, Hee Jun;Chang, Ho Jin;Lee, Yong Sang;Chang, Hang-Seok;Park, Cheong Soo
    • Korean Journal of Head & Neck Oncology
    • /
    • v.35 no.2
    • /
    • pp.19-25
    • /
    • 2019
  • Background/Objectives: Although anaplastic thyroid carcinoma (ATC) is rare, it is one of the deadliest forms of thyroid cancer. The fatality rate for ATC is high, and the survival rate at one year after diagnosis is <20%. The present study aimed to investigate the anti-tumor activities of paclitaxel, radiation, and tyrosine kinase inhibitor (TKI) combined therapy in anaplastic thyroid cancer cells both in vitro and in vivo and explore its effects on apoptotic cell death pathways. Materials & Methods: ATC cell line was exposed to TKI, lenvatinib in the presence or absence of paclitaxel with radiation, and cell viability was determined by MTT assay. Effects of the combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and western blot analysis. The ATC cell line xenograft model was used to examine the anti-tumor activity in vivo. Results: Our data revealed that the combined administration of paclitaxel, TKI, and radiation decreased cell viability in ATC cells, and also significantly increased apoptotic cell death in these cells, as demonstrated by the cleavage of caspase-3 and DNA fragmentation. This combination therapy reduced anti-apoptotic factor levels in ATC cells, while significantly decreasing tumor volume and increasing survival in ATC xenografts. Conclusion: These results indicate that administering the combination of paclitaxel, TKI, and radiation therapy may exert significant anticancer effects in preclinical models, potentially suggesting a new clinical approach for treating patients with ATC.

Effects of Bee Venom and Sweet Bee Venom Acupuncture on Functional Recovery and c-Fos Expression in the Brain after Sciatic Crushed Nerve Injury in Rats

  • Choi, Seung-Peom;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.79-97
    • /
    • 2010
  • Background: Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficit. Bee venom acupuncture has traditionally been used to treat several inflammatory diseases and chronic pain conditions. Objectives: The aims of this study were to compare the effects of bee venom (general bee venom, BV) and sweet bee venom (allergen-removed bee venom, SBV) acupuncture on the recovery rate of locomotor function, the expression of brain-derived neurotrophic factor (BDNF) in the sciatic nerve, and the expression of c-Fos in the brain following sciatic crushed nerve injury in rats, and to evaluate differences due to administration areas. Method: Walking track analysis, Western blot for BDNF and tyrosine receptor kinase B (TrkB), and immunohistochemistry for c-Fos were performed. In this study, comparative analyses of the effects of BV and SBV acupuncture in relation to administration sites, contralateral side or ipsilateral side, were conducted. Results: In the present result, sciatic function index (SFI) in walking track analysis significantly decreased following sciatic crushed nerve injury. The expressions of BDNF and TrkB in the sciatic nerve increased after induction of sciatic crushed nerve injury. C-Fos expression in the ventrolateral periaqueductal gray (vlPAG) and paraventricular nucleus (PVN) also increased. BV and SBV acupuncture treatment improved the SFI in walking track analysis. Treatment with SBV at 1mg/kg showed more potent enhancing effect on SFI compared to BV. Treatment with 1mg/kg BV or 1mg/kg SBV acupuncture suppressed the BDNF and TrkB expression in the sciatic nerve. BV and SBV acupuncture treatment also suppressed c-Fos expression in the PVN and vlPAG regions. Treatment with SBV at 1mg/kg showed more potent suppressing effect on c-Fos expression compared to BV when injected into the contralateral side of the injured nerve. Generally we could not find significant difference in the effects between contralateral side and ipsilateral side of the injured nerve. Conclusion: We have shown that BV and SBV acupuncture treatment can be used as the effective therapeutic modality to ameliorate the symptoms of sciatic crushed nerve injury.

Prognostic Factors and Scoring Systems for Non-Small Cell Lung Cancer Patients Harboring Brain Metastases Treated with Gamma Knife Radiosurgery

  • Eom, Jung-Seop;Cho, Eun-Jung;Baek, Dong-Hoon;Lee, Kyung-Nam;Shin, Kyung-Hwa;Kim, Mi-Hyun;Lee, Kwang-Ha;Kim, Ki-Uk;Park, Hye-Kyung;Kim, Yun-Sung;Park, Soon-Kew;Cha, Seong-Heon;Lee, Min-Ki
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.15-23
    • /
    • 2012
  • Background: The survival of non-small cell lung cancer (NSCLC) patients with brain metastases is reported to be 3~6 months even with aggressive treatment. Some patients have very short survival after aggressive treatment and reliable prognostic scoring systems for patients with cancer have a strong correlation with outcome, often supporting decision making and treatment recommendations. Methods: A total of one hundred twenty two NSCLC patients with brain metastases who received gamma knife radiosurgery (GKRS) were analyzed. Survival analysis was calculated in all patients for thirteen available prognostic factors and four prognostic scoring systems: score index for radiosurgery (SIR), recursive partitioning analysis (RPA), graded prognostic assessment (GPA), and basic score for brain metastases (BSBM). Results: Age, Karnofsky performance status, largest brain lesion volume, systemic chemotherapy, primary tumor control, and medication of epidermal growth factor receptor tyrosine kinase inhibitor were statistically independent prognostic factors for survival. A multivariate model of SIR and RPA identified significant differences between each group of scores. We found that three-tiered indices such as SIR and RPA are more useful than four-tiered scoring systems (GPA and BSBM). Conclusion: There is little value of RPA class III (most unfavorable group) for the same results of 6-month and 1-year survival rate. Thus, SIR is the most useful index to sort out patients with poorer prognosis. Further prospective trials should be performed to develop a new molecular- and gene-based prognostic index model.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.