DOI QR코드

DOI QR Code

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells

신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화

  • Woo, Seon-Min (Department of Immunology, School of Medicine, Keimyung University) ;
  • Park, Eun-Jung (Department of Immunology, School of Medicine, Keimyung University) ;
  • Kwon, Taeg-Kyu (Department of Immunology, School of Medicine, Keimyung University)
  • 우선민 (계명대학교 의과대학 면역학교실) ;
  • 박은정 (계명대학교 의과대학 면역학교실) ;
  • 권택규 (계명대학교 의과대학 면역학교실)
  • Received : 2010.12.27
  • Accepted : 2011.01.12
  • Published : 2011.01.30

Abstract

Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

본 연구에서는 전사억제제(transcriptional inhibitor)로 알려진 actinomycin D가 전사조절인자(transcription factor)인 STAT의 인산화를 유도한다는 것을 확인하였다. Actinomycin D 처리 시 STAT1의 Tyr701, Ser727 인산화는 유도되지 않았지만 STAT3의 Tyr705 잔기의 인산화를 특이적으로 유도하는 것을 확인하였다. Actinomycin D에 의한 STAT3의 Tyr705 인산화 유도가 어떠한 기전을 통한 것인지 확인하기 위해서 관련 인자의 단백질 및 mRNA 발현을 확인한 결과 SOCS3의 단백질 및 mRNA 발현의 감소를 확인하였다. STAT3의 탈인산화를 유도한다고 알려진 tyrosine phosphatase인 SHP-1와 STAT의 upstream kinase인 JAK2의 인산화는 변화가 없었다. 또한 actinomycin D 뿐 아니라 다른 전사억제제인 DRB를 처리 하였을 경우에도 STAT3의 Tyr705 인산화가 유도되는 것을 확인하였다. 이상의 결과는 전사억제제에 의하여 특이적인 SOCS3 단백질 발현감소는 SOCS3의 하류의 target인 STAT3 인산화를 유도하였다.

Keywords

References

  1. Chim, C. S., T. K. Fung, W. C. Cheung, R. Liang, and Y. L. Kwong. 2004. SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103, 4630-4635. https://doi.org/10.1182/blood-2003-06-2007
  2. Choi W. H, K. A. Ji, S. B. Jeon, M. S. Yang, H. Kim, K. J. Min, M. Shong, I. Jou, and E. H. Joe. 2005. Anti-inflammatory roles of retinoic acid in rat brain astrocytes: Suppression of interferon-gamma-induced JAK/STAT phosphorylation. Biochem. Biophys. Res. Commun. 329, 125-131. https://doi.org/10.1016/j.bbrc.2005.01.110
  3. Elliott, J. 2008. SOCS3 in liver regeneration and hepatocarcinoma. Mol. Interv. 8, 19-21. https://doi.org/10.1124/mi.8.1.5
  4. Federici, M., M. L. Giustizieri, C. Scarponi, G. Girolomoni, and C. Albanesi. 2002. Impaired IFN-gamma-dependent inflammatory responses in human keratinocytes overexpressing the suppressor of cytokine signaling 1. J. Immunol. 169, 434-442. https://doi.org/10.4049/jimmunol.169.1.434
  5. Frank, C., C. Burkhardt, D. Imhof, J. Ringel, O. Zschornig, K. Wieligmann, M. Zacharias, and F. D. Bohmer. 2003. Effective dephosphorylation of Src substrates by SHP-1. J. Biol. Chem. 279, 11375-11383.
  6. Fraschini, A., M. G. Bottone, A. I. Scovassi, M. Denegri, M. C. Risueno, P. S. Testillano, T. E. Martin, M. Biggiogera, and C. Pellicciari. 2005. Changes in extranucleolar transcription during actinomycin D-induced apoptosis. Histol. Histopathol. 20, 107-117.
  7. Inghirami, G., R. Chiarle, W. J. Simmons, R. Piva, K. Schlessinger, and D. E. Levy. 2005. New and old functions of STAT3: a pivotal target for individualized treatment of cancer. Cell Cycle 4, 1131-1133. https://doi.org/10.4161/cc.4.9.1985
  8. Kang, H. J. and H. J. Park. 2009. Novel molecular mechanism for actinomycin D activity as an oncogenic promoter G-quadruplex binder. Biochemistry 48, 7392-7398 https://doi.org/10.1021/bi9006836
  9. Kim, H., J. M. Suh, E. S. Hwang, D. W. Kim, H. K. Chung, J. H. Song, J. H. JH., Hwang, K. C. Park, H. K. Ro, E. K. Jo, J. S. Chang, T. H. Lee, M. S. Lee, L. D. Kohn, and M. Shong. 2003. Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: involvement of STAT3 and suppressor of cytokine signaling. J. Immunol. 171, 616-627. https://doi.org/10.4049/jimmunol.171.2.616
  10. Kim, H. K., M. Y. Kong, M. J. Jeong, D. C. Han, J. D. Choi, H. Y. Kim, K. S. Yoon, J. M. Kim, K. H. Son, and B. M. Kwon. 2005. Investigation of cell cycle arrest effects of actinomycin D at G1 phase using proteomic methods in B104-1-1 cells. Int. J. Biochem. Cell Biol. 37, 1921-1929. https://doi.org/10.1016/j.biocel.2005.04.015
  11. Kitsera, N., A. Khobta, and B. Epe. 2007. Destabilized green fluorescent protein detects rapid removal of transcription blocks after genotoxic exposure. BioTechniques 43, 222-227. https://doi.org/10.2144/000112479
  12. Kleeff, J., M. Korman, H. Sawhney, and M. Korc. 2000. Actinomycin D induces apoptosis and inhibits growth of pancreatic cancer cells. Int. J. Cancer 86, 399-407. https://doi.org/10.1002/(SICI)1097-0215(20000501)86:3<399::AID-IJC15>3.0.CO;2-G
  13. Kumarswamy, R. and S. Chandna. 2010. Inhibition of microRNA-14 contributes to actinomycin-D induced apoptosis in Sf9 insect cell line. Cell Biol. Int. 34, 851-857. https://doi.org/10.1042/CBI20100035
  14. Magdalan, J., A. Ostrowska, A. Piotrowska, I. Izykowska, M. Nowak, A. Gomulkiewicz, M. Podhorska-Okolow, A. Szelag, and P. Dziegiel. 2010. a-Amanitin induced apoptosis in primary cultured dog hepatocytes. Folia Histochem. Cytobiol. 48, 58-62. https://doi.org/10.2478/v10042-010-0010-6
  15. McWhinney, C. D., R. A. Hunt, K. M. Conrad, D. E. Dostal, and K. M. Baker. 1997. The type I angiotensin II receptor couples to Stat1 and Stat3 activation through Jak2 kinase in neonatal rat cardiac myocytes. J. Mol. Cell Cardiol. 29, 2513-2524. https://doi.org/10.1006/jmcc.1997.0489
  16. Mitchell, T. J. and S. John. 2005. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology 114, 301-312. https://doi.org/10.1111/j.1365-2567.2005.02091.x
  17. Muller, P., D. Kuttenkeuler, V. Gesellchen, M. P. Zeidler, and M. Boutros. 2005. Identification of JAK/STAT signalling components by genome-wide RNA interference. Nature 436, 871-875. https://doi.org/10.1038/nature03869
  18. O'Shea, J. J., M. Gadina, and R. D. Schreiber. 2002. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109, s121-131. https://doi.org/10.1016/S0092-8674(02)00701-8
  19. Park, Y. J., E. S. Park, M. S. Kim, T. Y. Kim, H. S. Lee, S. Lee, I. S. Jang, M. Shong, D. J. Park, and B. Y. Cho. 2002. Involvement of the protein kinase C pathway in thyrotropin-induced STAT3 activation in FRTL-5 thyroid cells. Mol. Cell Endocrinol. 194, 77-84. https://doi.org/10.1016/S0303-7207(02)00185-5
  20. Samuel, W. and J. H. Douglas. 2004. Inhibitors of cytokine signal transduction. J. Biol. Chem. 279, 821-824. https://doi.org/10.1074/jbc.R300030200
  21. Shim, D, H. Y. Kang, B. W. Jeon, S. S. Kang, S. I. Chang, and H. Y. Kim. 2004. Protein kinase B inhibits apoptosis induced by actinomycin D in ECV304 cells through phosphorylation of caspase 8. Arch. Biochem. Biophys. 425, 214-220. https://doi.org/10.1016/j.abb.2004.03.028
  22. Szoor, B. 2010. Trypanosomatid protein phosphatases. Mol. Biochem. Parasitol. 173, 53-63. https://doi.org/10.1016/j.molbiopara.2010.05.017
  23. te Poele, R. H., A. L. Okorokov, and S. P. Joel. 1999. RNA synthesis block by 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) triggers p53-dependent apoptosis in human colon carcinoma cells. Oncogene 18, 5765-5772. https://doi.org/10.1038/sj.onc.1202961
  24. Yasukawa, H., M. Ohishi, H. Mori, M. Murakami, T. Chinen, D. Aki, T. Hanada, K. Takeda, S. Akira, M. Hoshijima, T. Hirano, K. R. Chien, and A. Yoshimura. 2003. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat. Immunol. 4, 551-556. https://doi.org/10.1038/ni938
  25. Zhang, L., D. B. Badgwell, J. J. Bevers, K. Schlessinger, P. J. Murray, D. E. Levy, and S. S. Watowich. 2006. IL-6 signaling via the STAT3/SOCS3 pathway: Functional analysis of the conserved STAT3 N-domain. Mol. Cell Biochem. 288, 179-189. https://doi.org/10.1007/s11010-006-9137-3