• Title/Summary/Keyword: Tyrosinase Inhibitory Activity

Search Result 826, Processing Time 0.026 seconds

A Study on the Melanin Synthesis Inhibition and Whitening Effect of Schizandrae Fructus (오미자(五味子)의 멜라닌 생성 억제와 미백효과에 관한 연구)

  • Doo, In-Sun;Lim, Kyu-Sang;Hwang, Chung-Yeon;Park, Min-Cheol;Kim, Nam-Kwen
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.20 no.3
    • /
    • pp.51-62
    • /
    • 2007
  • Objective : The aim of this study is to assess the effect of Schizandrae Fructus on melanin synthesis inhibition and whitening effect. Methods : We assessed inhibitory effects of Schizandrae Fructus on melanin-release from B16F10, on melanin production in B16F10, on mushroom tyrosinase activity in vitro, on tyrosinase activity in B16F10 and effect of Schizandrae Fructus on the expression tyrosinase, TRP-1, TRP-2, PKA, ERK-1 ERK-2, AKT-1, MITF in B16F10. Results and Conclusion : 1. Schizandrae Fructus inhibited melanin-release, melanin production in B16F10. 2. Schizandrae Fructus inhibited tyrosinase activity in vitro and in B16F10. 3. Schizandrae Fructus suppressed the expression of tyrosinase, TRP-1, TRP-2, PKA, ERK-2 in B16F10.

  • PDF

The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis (적양 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the EtOAc layer (AJE) after enzyme treatment of 75% EtOH extract of the Alnus Japonica Steud. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, AJE suppressed melanin production up to 52% at a concentration of $40{\mu}g/mL$. To elucidate the mechanism of the inhibitory effects of AJE on melanogenesis, we measured expression of melanogenesis-related proteins by the western blot assay. As a result, AJE suppressed the expression of tyrosinase related protein 1 (TRP-1) and microphthalmia associated transcription factor (MITF). Moreover, AJE increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). These results conclude that ERK activation by AJE reduces melanin synthesis via MITF downregulation and is subsequent to the inhibition of TRP-1 expression. Therefore, we suggest that AJE could be used as active ingredients for skin whitening.

A Study on Whitening and Anti-inflammatory Effects of Eriobotrya Japonica Leaf Extracts with Different Extraction Methods (추출 방법에 따른 비파엽 추출물의 미백 및 항염활성에 관한 연구)

  • Park, Jung Ok;Park, Jin Oh;Joo, Chul Gue
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.151-157
    • /
    • 2015
  • In this study, we prepared Eriobotrya japonica leaf extracts by several extraction processes and then evaluated their biological activities for their potential application as a new raw material of functional cosmetic. Their whitening effects were measured by tyrosinase inhibitory activities, and anti-inflammatory effects were determined by inhibitory activities of nitric oxide (NO) production. Among the several extracts obtained from E. japonica leaf, supercritical fluid extract showed tyrosinase inhibitory activities at the concentration of 10%. Inhibitory activity on NO production effect related to anti-inflammatory efficacy was in the order: supercritical fluid extract > ethanol extract > hot water extract. According to the results of MTT assay, cell cytotoxicity was not observed at all concentrations except for a 5% concentration of the 70% ethanol extract. For whitening effects, 30% ethanol and 70% ethanol extract showed mushroom tyrosinase inhibitory activity at the concentration of 5%. These results indicated that E. japonica leaf extracts could have the functional effects when they are added as ingredients in cosmetics.

Effect of Artemisia anomala S. Moore on Antioxidant Activity and Melanogenesis (유기노의 항산화 활성 및 멜라닌 생성 억제 효과)

  • Lee, Bum-Chun;Kim, Jin-Hwa;Kim, Jin-Hui;Pyo, Hyeong-Bae;Zhang, Yong-He;Park, Hum-Dai;Cho, Young-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4 s.143
    • /
    • pp.273-277
    • /
    • 2005
  • In mammalian melanocytes, melanin synthesis is controlled by tyrosinase, the key enzyme in the pigment synthesis. In this study, to develop a new whitening agent, we have investigated the antioxidant and the inhibitory effect of Artemisia anomala extract on tyrosinase activity and melanigenesis in the B16/F1 melanoma cells. The inhibition ratio of tyrosinase activity of butanol fraction from A. anomala was higher than that of arbutin ($97.5{\pm}0.5%$ at the concentration of 2 mg/ml). The butanol fraction was shown scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and superoxide anion radicals in a dose dependent manner. The highest inhibitory activity of melanogenesis was also butanol fraction ($25.0{\pm}3%$ at the concentration of $200\;{\mu}g/ml$). From these results, we suggest that the A. anomala extract might be used to be a potential agent for skin whitening.

Determination of tyrosinase inhibitory activity and betanin content changes in beetroot (Beta vulgaris) extracts fermented by EM

  • Yoo, Jong Hee;Kim, Hyun Ki;Yoon, Tae Wou;Mekapogu, Manjulatha;Ahn, Myung Suk;Kwon, Oh Keun;Bang, Keuk Soo;Kim, Yong Ju
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.110-110
    • /
    • 2019
  • Beet (Beta vulgaris) is a crop similar to sugar beet, chard and leaf beets, and its origin is the Mediterranean coast of southern Europe and Central Asia. Among the components contained in beet, betalain, the main component of the root, has been reported to prevent lipid peroxidation induced by active oxygen and free radicals due to its high radical scavenging ability. Among these, the betalain, betanin (Betanidin 5-O-${\beta}$-glucoside) contains both phenolic and cyclic amine groups, all of which are highly electron-donating and act as antioxidants and has tyrosinase inhibitory activity. Betanin accounts for about 75-95% of the total pigment found in the beet. EM stands for effective microorganisms and is a collection of beneficial microorganisms. EM includes yeast, lactic acid bacteria, mycelia, photosynthetic bacteria, actinomycetes, etc. Human patch test according to CTFA guidelines was observed to be a safe source of no stimulation when 5% (v/v) of the EM fermentation liquid was applied to the human body. In addition, beneficial microorganisms are synergistic in the process of co-existence and cultivation and it has the effect of increasing antioxidant capacity and inhibiting corruption. This study confirms the difference in tyrosinase inhibitory activity and betanin content of beetroot extracts and EM fermented beetroot extracts. Hence, these results confirm that EM fermented beetroot extracts are highly beneficial for the human body.

  • PDF

Chemical Components from the Stems of Pueraria lobata and Their Tyrosinase Inhibitory Activity

  • Morgan, Abubaker M.A.;Jeon, Mi Ni;Jeong, Min Hye;Yang, Seo Young;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.22 no.2
    • /
    • pp.111-116
    • /
    • 2016
  • Phytochemical investigation of the stems of Pueraria lobata (Wild) Ohwi (Leguminosae), led to the isolation of eighteen known compounds: ${\beta}$-amyrone (1), (+)-pinoresinol (2), (+)-syringaresinol (3) $(+)-syringaresinol-O-{\beta}-{\small{D}}-glucoside$ (4), (+)-lariciresinol (5), (-)-tuberosin (6), naringenin (7), liquiritigenin (8), isoliquiritigenin (9) genistein (10), daidzein (11) daidzin (12) daidzein 4',7-diglucoside (13) 2,4,4'-trihydroxy deoxybenzoin (14), S-(+)-1-hydroxy-3-(4-hydroxyphenyl)-1-(4-hydroxy-2-methoxy-phenyl)propan-2-one (15), methyl $2-O-{\beta}-{\small{D}}-glucopyranosylbenzoate$ (16), pyromeconic acid $3-O-{\beta}-{\small{D}}-glucopyranoside$ 6'- (O-4''-hydroxy-3-methoxybenzoate) (17), and allantion (18). The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of those data with previously published results. The effects of isolated compounds on mushroom tyrosinase enzymatic activity were screened. The results indicated that, chloroform extract of P. lobata stems turned out to be having tyrosinase inhibitory effect, and only compounds 5, 8, 9, and 11 showed enzyme inhibitory activity, with $IC_{50}$ values of $21.49{\pm}4.44$, $25.24{\pm}6.79$, $4.85{\pm}2.29$, and $17.50{\pm}1.29{\mu}M$, respectively, in comparison with these of positive control, kojic acid ($IC_{50}\;12.28{\pm}2.72{\mu}M$). The results suggest that P. lobata stems extract as well as its chemical components may represent as potential candidates for tyrosinase inhibitors.

Antimelanogenic and antioxidant effects of trimethoxybenzene derivatives: methyl 3,4,5-trimethoxybenzoate, ethyl 3,4,5-trimethoxybenzoate, methyl 3,4,5-trimethoxycinnamate, and ethyl 3,4,5-trimethoxycinnamate

  • Jaewon Shin;Harim Lee;Seunghyun Ahn;Won Seok Jeong;CheongTaek Kim;Seyeon Park
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.299-306
    • /
    • 2022
  • In this study, derivatives of trimethoxybenzene were investigated as inhibitors of melanogenesis. We examined the effects of methyl 3,4,5-trimethoxybenzoate (MTB), ethyl 3,4,5-trimethoxybenzoate (ETB), methyl 3,4,5-trimethoxycinnamate (MTC), and ethyl 3,4,5-trimethoxycinnamate (ETC). First, the inhibitory effects of these agents on melanin production were evaluated using α-melanocyte-stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. We found that all derivatives decreased α-MSH-induced melanin production in B16F10 melanoma cells; ETC showed a strong inhibitory effect at half of the concentration of the other derivatives. As tyrosinase is considered a key enzyme of melanogenesis, we also examined whether the derivatives inhibited tyrosinase activity. MTC and ETC reduced mushroom tyrosinase activity and expression levels of α-MSH-induced B16F10 cellular tyrosinase protein. Inhibitory effects of all derivatives on α-MSH-induced B16F10 cellular tyrosinase activity were shown in a dose-dependent manner. Additionally, the derivatives were exposed to diphenylpicrylhydrazyl free radical to examine their antioxidant characteristics. All derivatives showed considerable antioxidant activity, which was 2-fold higher than that of arbutin. In conclusion, the trimethoxybenzene derivatives, including MTB, ETB, MTC, and ETC exerted anti-melanogenic and antioxidant effects on α-MSH-stimulated melanogenesis, demonstrating their potential for use as novel hypopigmenting agents and antioxidants.

Anti-Melanogenesis and Anti-Wrinkle Effects of Sargassum micracanthum Extracts (잔가시 모자반 추출물의 주름 개선 및 미백 효과)

  • Pak, Won-Min;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Park, Ji-Hye;Bae, Nan-Young;Park, Sun-Hee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • Sargassum micracanthum (SM) is a member of the family Sargassaceae and commonly occurs along the coast of Korea. Extracts from SM were evaluated for their antioxidant and collagenase and tyrosinase inhibitory activities based on their total phenolic concentration (TPC), 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and metal-chelating effect. The TPC of SM ethanol and water extracts used in the study was 11.20 and 11.70 mg/g of dry sample, respectively. Both SM ethanol and water extracts had high DPPH radical-scavenging effect. The metal-chelating effect of SM ethanol extract (40.47% at 0.5 mg/ml) was higher than that of water extract (23.28% at 0.5 mg/ml). With regard to the anti-wrinkling effect, SM ethanol extract showed collagenase inhibitory activity with an $IC_{50}$ value of $488.20{\mu}g/ml$. Lastly, regarding the anti-melanogenesis effect, SM ethanol extract showed higher tyrosinase inhibitory activity (45.08% at 5 mg/ml) than that shown by the water extract (21.29% at 5 mg/ml). These results suggest that SM has the potential to be a resource with natural anti-melanogenesis, anti-wrinkle, and anti-oxidant effects.

Screeing of Tyrosinase Inhibitors from Oriental Herbs (한약재로부터 Tyrosinase 저해제의 탐색)

  • 서승염
    • Korean Journal of Plant Resources
    • /
    • v.14 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • Mammalian tyrosinase plays an important role in the process of melanin polymer biosynthesis by catalyzing the hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine(DOPA) and the oxidation of DOPA to dopaquinone. These processes are major determinant of human skin color and involved in localized hyperpigmentation. Therefore, the enzyme inhibitors have been of great concern as skin-whitening cosmetics. Methanol extracts of 174 oriental herbs were screened for the mushroom tyrosinase inhibitory activity.

  • PDF

Screening of Inhibitory Effects of an Oriental Herb on Melanogenesis (한약재에서의 멜라닌 생성 억제 효과 검색)

  • Kang, Kyoung-Ah;Han, Sang-Sook;Lee, Mu-Hyoung;Kim, Youn-Jung
    • Journal of East-West Nursing Research
    • /
    • v.14 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • Purpose: To screen candidate oriental herb material for antimelanogenics. Methods: Oriental herbs (n=100) were screened for mushroom tyrosinase inhibitory activity in vitro using the HM3KO human melanin cell line cultured in DMEM supplemented with 10% fetal bovine serum. Cytotoxicity was assessed by a cell viability assay involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Trypan Blue exclusion, and cell enumeration. Results: Tyrosinase inhibitory effects on 100 oriental herbs was evident. Of these, 11 herbs inhibited tyrosinase activity by 40% without being cytotoxic to HM3KO cells. Three herb varieties significantly decreased melanin synthesis in HM3KO cells. Conclusions: Oriental herb can have antimelanogenic effects indicating their potential for functional therapeutic use in dermatological whitening.

  • PDF