DOI QR코드

DOI QR Code

Chemical Components from the Stems of Pueraria lobata and Their Tyrosinase Inhibitory Activity

  • Morgan, Abubaker M.A. (College of Pharmacy, Chungnam National University) ;
  • Jeon, Mi Ni (College of Pharmacy, Chungnam National University) ;
  • Jeong, Min Hye (College of Pharmacy, Chungnam National University) ;
  • Yang, Seo Young (College of Pharmacy, Chungnam National University) ;
  • Kim, Young Ho (College of Pharmacy, Chungnam National University)
  • Received : 2015.10.28
  • Accepted : 2016.01.07
  • Published : 2016.06.30

Abstract

Phytochemical investigation of the stems of Pueraria lobata (Wild) Ohwi (Leguminosae), led to the isolation of eighteen known compounds: ${\beta}$-amyrone (1), (+)-pinoresinol (2), (+)-syringaresinol (3) $(+)-syringaresinol-O-{\beta}-{\small{D}}-glucoside$ (4), (+)-lariciresinol (5), (-)-tuberosin (6), naringenin (7), liquiritigenin (8), isoliquiritigenin (9) genistein (10), daidzein (11) daidzin (12) daidzein 4',7-diglucoside (13) 2,4,4'-trihydroxy deoxybenzoin (14), S-(+)-1-hydroxy-3-(4-hydroxyphenyl)-1-(4-hydroxy-2-methoxy-phenyl)propan-2-one (15), methyl $2-O-{\beta}-{\small{D}}-glucopyranosylbenzoate$ (16), pyromeconic acid $3-O-{\beta}-{\small{D}}-glucopyranoside$ 6'- (O-4''-hydroxy-3-methoxybenzoate) (17), and allantion (18). The chemical structures of these compounds were elucidated from spectroscopic data and by comparison of those data with previously published results. The effects of isolated compounds on mushroom tyrosinase enzymatic activity were screened. The results indicated that, chloroform extract of P. lobata stems turned out to be having tyrosinase inhibitory effect, and only compounds 5, 8, 9, and 11 showed enzyme inhibitory activity, with $IC_{50}$ values of $21.49{\pm}4.44$, $25.24{\pm}6.79$, $4.85{\pm}2.29$, and $17.50{\pm}1.29{\mu}M$, respectively, in comparison with these of positive control, kojic acid ($IC_{50}\;12.28{\pm}2.72{\mu}M$). The results suggest that P. lobata stems extract as well as its chemical components may represent as potential candidates for tyrosinase inhibitors.

Keywords

References

  1. Seo, S. Y.; Sharma, V. K.; Sharma, N. J. Agric. Food Chem. 2003, 51, 2837-2853. https://doi.org/10.1021/jf020826f
  2. Nhiem, N. X.; Yen, H. T.; Luyen, B. T. T.; Tai, B. H.; Hoan, P. V.; Thao, N. P.; Anh, H. L. T.; Ban, N. K.; Kiem, P. V.; Minh, C. V.; Kim, J. H.; Jeon M. N.; Kim, Y. H. Bull. Korean Chem. Soc. 2015, 36, 703-706.
  3. Cho, Y. J.; Son, B. W.; Jeong, D. Y.; Choi, H. D.; Park, J. H. Kor. J. Pharmacogn. 1998, 29, 193-197.
  4. Chen, T. R.; Shih, S. C.; Ping, H. P.; Wei, Q. K. J. Food Drug Anal. 2012, 20, 681-685.
  5. Hung, V. P.; Morita, N. Food Chem. 2007, 105, 749-755. https://doi.org/10.1016/j.foodchem.2007.01.023
  6. Li, G.; Zhang, Q.; Wang, Y. Zhongguo Zhong Yao Za Zhi 2010, 35, 3156-3160.
  7. Luo, X. D.; Wu, S. H.; Ma, Y. B.; Wu, D. G. Acta Bot. Sin. 2001, 43, 426-430.
  8. Xie, L. H.; Akao, T.; Hamasaki, K.; Deyama, T.; Hattori, M. Chem. Pharm. Bull. 2003, 51, 508-515. https://doi.org/10.1248/cpb.51.508
  9. Park, J. A.; Kim, H. J.; Jin, C. B.; Lee, K. T.; Lee, Y. S. Arch. Pharm. Res. 2003, 26, 1009-1013. https://doi.org/10.1007/BF02994750
  10. Shahat, A. A.; Abdel-Azim, N. S.; Pieters, L.; Vlietinck, A. J. Fitoterapia 2004, 75, 771-773. https://doi.org/10.1016/j.fitote.2004.05.008
  11. Wang, Q. H.; Peng, K.; Tan, L. H.; Dai, H. F. Molecules 2010, 15, 4011-4016. https://doi.org/10.3390/molecules15064011
  12. Shirataki, Y.; Tsuzuku, T.; Yokoe, I.; Hirano, R. T.; Komatsu, M. Chem. Parm. Bull. 1990, 38, 1712-1716. https://doi.org/10.1248/cpb.38.1712
  13. Kulesh, N. I.; Vasilevskaya, N. A.; Veselova, M. V.; Denisenko, V. A.; Fedoreev, S. A. Chem. Nat. Compd. 2008, 44, 712-714. https://doi.org/10.1007/s10600-009-9195-3
  14. Yahara, S.; Ogata, T.; Saijo, R.; Konishi, R.; Yamahara, J.; Miyahara, K.; Nohara, T. Chem. Pharm. Bull. 1989, 37, 979-987. https://doi.org/10.1248/cpb.37.979
  15. Veitch, N. C.; Sutton, P. S.; Kite, G. C.; Ireland, H. E. J. Nat. Prod. 2003, 66, 210-216. https://doi.org/10.1021/np020425u
  16. Kim, B. H.; Kim, C. M. Kor. J. Pharmacogn. 1995, 26, 18-22.
  17. Yang, M. C.; Kim, D. S.; Jeong, S. W.; Ma, J. Y. Korean J. Medicinal Crop. Sci. 2011, 19, 446-455. https://doi.org/10.7783/KJMCS.2011.19.6.446
  18. Jun, M.; Fu, H.-Y.; Hong, J.; Wan, X.; Yang, C. S.; Ho, C. T. J. Food Sci. 2003, 68, 2117-2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x
  19. Kinjo, J. E.; Furusawa, J. I.; Baba, J.; Takeshita, T.; Yamasaki, M.; Ohara, T. Chem. Pharm. Bull. 1987, 35, 4846-4850. https://doi.org/10.1248/cpb.35.4846
  20. Ng, L. T.; Ko, H. H.; Lu, T. M. Bioorg. Med. Chem. 2009, 17, 4360-4366. https://doi.org/10.1016/j.bmc.2009.05.019
  21. Bezuidenhout, S. C.; Bezuidenhoudt, B. C. B.; Ferreira, D. Phytochemistry 1988, 27, 2329-2334. https://doi.org/10.1016/0031-9422(88)80154-7
  22. Wang, C.; Zhang, T. T.; Du, G. H.; Zhang, D. M. J. Asian Nat. Prod. Res. 2011, 13, 817-825. https://doi.org/10.1080/10286020.2011.596830
  23. Chai, X.; Su, Y. F.; Guo, L. P.; Wu, D.; Zhang, J. F.; Si, C. L.; Kim, J. K.; Bae, Z. S. Biochem. Syst. Ecol. 2008, 36, 216-218. https://doi.org/10.1016/j.bse.2007.07.002
  24. Yin, F.; Hu, L.; Pan, R. Chem. Pharm. Bull. 2004, 52, 1440-1444. https://doi.org/10.1248/cpb.52.1440
  25. Khatib, S.; Nerya, O.; Musa, R.; Shmuel, M.; Tamir, S.; Vaya, J. Bioorg. Med. Chem. 2005, 13, 433-441. https://doi.org/10.1016/j.bmc.2004.10.010
  26. Wang, Y.; Curtis-Long, M. J.; Lee, B. W.; Yuk, H. J.; Kim, D. W.; Tan, X. F.; Park, K. H. Bioorg. Med. Chem. 2014, 22, 1115-1120. https://doi.org/10.1016/j.bmc.2013.12.047
  27. Kim, N. K.; Park, H. M.; Lee, J. K.; Ku, K. M.; Lee, C. H. J. Agric. Food Chem. 2015, 63, 8631-8639. https://doi.org/10.1021/acs.jafc.5b03566

Cited by

  1. Four new compounds from Dendrobium devonianum vol.33, pp.15, 2016, https://doi.org/10.1080/14786419.2018.1490900
  2. Chemical constituents of Porodaedalea pini mushroom with cytotoxic, antioxidant and anticholinesterase activities vol.13, pp.4, 2019, https://doi.org/10.1007/s11694-019-00189-2
  3. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances vol.6, pp.4, 2016, https://doi.org/10.3390/cosmetics6040057
  4. Determination of 12 herbal compounds for estimating the presence of Angelica Gigas Root, Cornus Fruit, Licorice Root, Pueraria Root, and Schisandra Fruit in foods by LC-MS/MS vol.37, pp.9, 2016, https://doi.org/10.1080/19440049.2020.1778187
  5. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review vol.11, pp.36, 2016, https://doi.org/10.1039/d1ra03196a
  6. Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: a systematic review vol.11, pp.36, 2016, https://doi.org/10.1039/d1ra03196a
  7. Evaluation of Anti-Melanogenesis Activity of Enriched Pueraria lobata Stem Extracts and Characterization of Its Phytochemical Components Using HPLC-PDA-ESI-MS/MS vol.22, pp.15, 2016, https://doi.org/10.3390/ijms22158105
  8. Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies vol.14, pp.9, 2016, https://doi.org/10.3390/ph14090837