• Title/Summary/Keyword: Typha angustifolia

Search Result 38, Processing Time 0.025 seconds

The Construction and Management of Artificial Wetland Using Emergent Macrophytes for High Biomass Production (대형정수식물을 활용한 높은 생산성의 인공습지 조성 및 관리)

  • Hong, Mun Gi;Heo, Young Jin;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.61-72
    • /
    • 2014
  • To present a guideline on the construction and management of artificial wetlands for high biomass production, three emergent macrophytes (Phragmites australis, PA; Typha angustifolia, TA; and Zizania latifolia, ZL) were planted under two substrates conditions (general soil with and without moss peat) and two water levels (5 cm and 20 cm) and monitored for three years. ZL showed greater growth performance rather than the others not only at early growth phase in the first year [shoot height, 200 cm; above-ground dry weight (AGDW), 500 $g/m^2$] but also in the last year (ZL, 1,100 $g/m^2$; TA, 770 $g/m^2$; and PA, 450 $g/m^2$ of AGDW). ZL with rapid growth at the early growth phase was not affected by naturally introduced weeds, whereas slower and poorer growth of PA and TA at the early growth phase resulted in relatively higher introduction and establishment of natural weeds. In turn, such introduced weeds negatively contributed to the growth of PA and TA particularly under shallow water (5 cm) with the substrate condition including moss peat. We suggest a plant material with rapid and great growth at the early phase such as ZL for reducing possible negative influences by the natural weeds and wild animals for high biomass production in constructed wetlands. A pre-growing process in greenhouse prior to planting might be an useful option to raise the competitiveness of those species when planting PA and/or TA. In addition, we recommend that integrated weed management system with utilizing various options at the most appropriate timing must be applied for maintaining sustainable high biomass production at the artificial wetlands.

Distribution of Biota and Removal Efficiency of Organic Matter in Natural Wetland (농촌배수처리용 습지의 생물상 및 유기물 제거율)

  • Kim, Bum-Chul;Jeon, Man-Sik;Jung, Geun;Jung, Yeon-Sook;Hwang, Gil-Soon
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.4
    • /
    • pp.407-414
    • /
    • 1999
  • Distribution of biota and removal efficiency of organic matter in natural wetland systems were examined from June to October 1998. The aquatic macrophyte communities were consisted of 13 families and 22 species. The composition of occurrence species were as follows: Phragmites communis Trinius are 35%, Persicaria thunbergii Nakai are 19%, Typha angustifolia L. are 17%, Bidens tripartita L. are 16%, Echinochloa crus-galli (L.) Beauv. are 12% and others are l%. The fauna collected from 5 sites consisted of total 6 classes of macroinvertebrates. The composition of occurrence classes were as follows: Insecta are 76%, O1igochaeta are 19%, Gastrapoda are 4% and others are 1%. These included 18 families, 7 orders of Insects. The larve and mosquito and midges were found in wetlands. Preventive strategies are needed for the suppression of mosquito at the stage of wetland planning and design. In wetland, removal efficiency of dissolved organic carbon is low because of primary production and the background level of DOC in the wetland discharge seems to be 5 mgC/1, but those of BOD was ca. 50%. Wetlands receiving water of low concentration can not work as purification field.

  • PDF

Treatment of Nutrients Using the Upflow Vegetated Filter (상향류식 수초여과지를 이용한 영양염류처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1287-1292
    • /
    • 2006
  • Constructed wetlands are well known as highly efficient system to treat wastewater from different sources. Among the constructed wetlands, upflow types of constructed wetlands have become a common selection of wastewater during the last decade. We conducted a pilot scale study at peen house on treating potential of nutrients by upflow vegetated filter(UVF) pilot wetland which was combined with hydrodynamic separator and used the cattail plant(Typha angustifolia), and operated with artificial nutrients influent. This study evaluate the performances of upflow vegetated fille, in removal of nutrients. The objectives of this study were two-fold: (i) to evaluate the nutrients removal performance of pilot-scale upflow vegetated filter, filled with a mixture of perlite and soil media and planted with cattails and (ii) to design of scale-up upflow vegetated filter using Froude number. Results indicated that, under the condition of the ranges of hydraulic surface load rate were $22.7{\pm}9.6\;m^3/m^2/day$, the average removal of $COD_{Mn}$, and TN, TP were 57.5%, 40.0% and 41.5%, respectively. Computational fluid dynamics, FLUENT 6.0 program was used to predict the distribution of velocity in UVF and hydrodynamic separator. Full scale UVF was designed using the Froude number scale-up method that was assumed geomertic similarity between model and prototype. Result shows that the UVF with 3 m diameter has capacity of design sewage flowrate 75 $m^3/day$.

Flora and Vegetation Structure in a 15-Year-Old Artificial Wetland (조성 후 15년이 경과한 인공습지의 식물상과 식생구조)

  • Son, Deokjoo;Lee, Hyohyemi;Lee, Eun Ju;Cho, Kang-Hyun;Kwon, Dongmin
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.54-63
    • /
    • 2015
  • This study was conducted to investigate the flora and vegetation structure at a 15-year-old artificial wetland for the water purification in Jincheon, Korea. The percentage of species number of obligate wetland plants and facultative wetland plants totaled 40%, whereas that of obligate upland plants and facultative upland plants was 57%. This result showed that the artificial wetland in the study experienced terrestrialization. The number of annual and biennial plants that are pioneer vegetation in a successional stage was lower than that of perennial herbs as a result of the long-term stabilization of vegetation. From the results of DCA (detrended correspondence analysis), water depth played an important role on the classification of vegetation structure in an old artificial wetland. Species diversity was higher in the terrestrialized plant communities such as Iris pseudacorus and Aster koraiensis than in any other wetland communities. Plant communities could be classified according to the wetland indices; obligate upland for A. koraiensis community, facultative wetlands for Carex dispalata var. dispalata and I. pseudacorus community, and obligate wetlands for Nymphoides peltata, Nymphaea tetragona, Phragmites communis, Potamogeton maackianus, and Typha angustifolia community. In conclusion, this result suggests that wetland vegetation should be maintained against terrestrialization through the proper management of sedimentation and hydrological regime in an artificial wetland.

Flora and Ecological Characteristics of Hydrophytes in the Littoral Zone of Paldang Reservior (팔당호 연안생태계의 수생식물상과 생태적 특성)

  • Lim, Yong-Seok;Ma, Seon-Mi;Na, Seong-Tae;Choi, Hong-Keun;Shin, Hyun-Chur
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.30-44
    • /
    • 2005
  • To investigate the flora and vegetation structure of vascular plants in the littoral zone of Paldang Reservoir, from April, 2003 to April 2004, nine sampling sites were selected. Along the Paldang Reservoir, 128 taxa, consisted of 51 families and 96 genera, were identified, among them, hydrophytes were confirmed as 38 taxa, which was comprised 29.7% to total taxa, whereas hygrophytes were 44 taxa and terrestrial plants were 46 taxa. Emergent hydrophytes consists of 21 taxa, including Phragmites australis and Typha angustifolia, and next, submerged hydrophytes were 8 taxa. However, the kinds and vegetation area of submerged hydorphytes were reduced compared to previous studies. In the littoral zone of Paldang Reservoir, the aquatic vegetation was widely developed near Dumulmori, Yangsuri, and Kwangdong Bridge, downstream of Kyungancheon. The average number of hydrophyte per sampling sites were 2.7 taxa, whereas hygrophytes were 2.5, and land plants were 1.8. In addition, the hydrophytes in the littoral zone of Paldang Reservoir showed the typical vertical zonation pattern like a natural swamp. These results mean that the littoral zone of Paldang Reservoir has the typical characteristics of aquatic plant ecosystem.

Vegetational characteristics of abandoned paddy terraces in comparison with natural and constructed wetlands (자연습지 및 인공습지와의 비교를 통해 본 계단식 묵논습지의 식생 특성)

  • Hong, Mun Gi;Park, Hyekyung;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.199-206
    • /
    • 2019
  • To understand vegetational characteristics of abandoned paddy terraces (APTs), species composition and plant species richness of APTs were compared with those of other natural- and constructed wetlands (NWs and CWs, respectively). Based on frequency of major vegetational components, Phragmites japonicus was more common in APTs (23.9%) than NWs (10.8%) and CWs (10.8%), whereas P. australis was less frequent in APTs (18.3%) than NWs (43.1%) and CWs (35.4%). Typha orientalis was common only in APTs (19.7%), whereas T. angustifolia was relatively common in NWs (21.5%) and CWs (32.3%). In addition, some wetland obligate species such as Leersia japonica, Oenanthe javanica, and Sium suave were frequently found only in APTs. In particular, APTs showed higher plant species richness ($6.3{\pm}2.2\;species/m^2$) than NWs ($4.9{\pm}1.8\;species/m^2$) and CWs ($3.9{\pm}1.3\;species/m^2$). APTs exhibited not only their distinctive vegetational characteristics but also higher ecological value in terms of plant species richness. Further attention on APTs as valuable biotopes supporting diverse plant species and continuous effort for management and conservation are needed more.

Vegetation and Water Characteristics of an Eco-technological Water Purifying Biotope in Yongin (용인시에 위치한 생태공학적 수질정화 비오톱의 식생 및 수환경 특성)

  • Nam, Bo Eun;Kim, Jae Geun;Hong, Mun Gi
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.432-445
    • /
    • 2018
  • Vegetation and water characteristics of an eco-technological water purifying biotope were investigated at five years after the wetland construction. A total of 91 vascular plant species in 36 families were recorded. Initially planted emergent macrophytes such as Phragmites australis, P. japonicus, Zizania latifolia, Typha latifolia, and T. angustifolia mainly comprised the vegetational components of the wetland. The effect of water purification was observed markedly in most indicators such as electric conductivity (P < 0.01), $NO_3-N$ (P < 0.05), $NH_4-N$ (P < 0.001), $K^+$ (P < 0.05), $Na^+$ (P < 0.01), and $Mg^{2+}$ (P < 0.01). In particular, $NO_3-N$ and $NH_4-N$ concentrations decreased to about 60% and 30%, respectively, via the purification process of the wetland. Separativeness and curvature from the meandering structure of 15 units (multi-cell wetland system) seemed likely to make the wetland continuously play a role as an eco-technological water purifying biotope. We recommend that eco-technological design factors should be included in wetland constructions for efficient and continuous functioning, thus enhancing ecological values of wetlands.

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.