• 제목/요약/키워드: Type of ship

검색결과 972건 처리시간 0.03초

선박 컴퍼스 갑판 구조물의 저진동 최적설계 (Optimum Design for Vibration Reduction of Compass Deck Structure in Ship)

  • 공영모;최수현;송진대;양보석
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.249-258
    • /
    • 2005
  • Recently, the vibration reduction at a local structure such as compass deck has been continuously requested by ship owner and shipbuilder. Because crews are afflicted with vibration, severe vibration problems even bring about a damage of structure. This study conducted to get an optimized stiffener size of compass deck to reduce the vibration level and decrease the weight of structure in ship. NASTRAN external call type optimization software (OptShip) which makes use of NASTRAN as a solver is used as an optimization tool. The results indicate that the optimum design is promising for real applications.

능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구 (System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter)

  • 최후재;박종용;김동진;김선영;이주호;안진형;김낙완
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

해양사고의 인적요인 분석에 관한 연구 - 선박충돌사고를 중심으로 - (An Analysis of Human Factor in Marine Accidents - Collision Accidents -)

  • 양원재;권석재;금종수
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 춘계학술발표회
    • /
    • pp.7-11
    • /
    • 2004
  • Maritime safety and marine environmental protection are the most important topic in marine society. But, so many marine accidents rave been occurred with the development of marine transportation industry. On the other side, ship is being operated under a highly dynamic environment and many factors are related with ship's collision Nowadays, the increasing tendency to the human errors of ship's collision is remarkable, and the investigation of the human errors has been heavily concentrated. This study analysed on the human errors of ship's collision related to the negligence of lookout and classified basic error type using GEMS(Generic Error Modeling System) dynamic model.

  • PDF

Variable Priority Number Control of SPMS for Leisure Ship

  • Oh, Jin-Seok;Park, Do-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.141-148
    • /
    • 2012
  • The power system of leisure ship has a character of stand-alone type, so it continuously checks the usable power. Especially, the leisure ship using renewable energy needs to adjust the power consumption of loads according to the usable power. Also, the important loads of leisure ship are different by operation mode. However, current power management system doesnot consider such character. This paper studied load management system of the SPMS(Smart Power Management System) and composed using the smart plug. The SPMS controls the loads depending on a user's pattern and character through variable priority number control. This control algorithm was verified through simulation of assumed user and situation using LabVIEW.

시스템 검증에 의한 조종수학 모형의 평가 (Estimation of Maneuvering Mathematical Model by System Identification Techniques)

  • 이호영;신현경
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.118-123
    • /
    • 1999
  • The mathematical model used in the simulation of ship's maneuvering contains the hydrodynamic coefficients, which are usually evaluated based on PMM model tests in the towing tank and used to predict ship's maneuvering performance when applied to the proto-type ship. The proper mathematical model has to be developed to predict ship's maneuvering motions with hydrodynamic coefficients very well. The mathematical model for PMM model tests is analyzed with identification program and the hydrodynamic coefficients and maneuvering motions by system identification we compared with those obtained directly from PMM model tests and sea trial. The mathematical model for PMM model tests was established and the magnitudes of ship's maneuvering coefficients were determined. When the identified values of coefficients were used to simulate the maneuvers, a very good agreement was obtained between the numerically simulated motion responses and those obtained from PMM model tests.

  • PDF

두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구 (A Study on Hull-Form Design for Ships Operated at Two Speeds)

  • 김태훈;최희종
    • 해양환경안전학회지
    • /
    • 제24권4호
    • /
    • pp.467-474
    • /
    • 2018
  • 본 연구의 목적은 2가지 선속에서 운항하는 선박의 선형 설계 자동화에 관한 것이다. 가장 기본적인 선박의 형상을 가지는 60계열($C_B=0.6$) 선박을 대상선박으로 선택하여 연구를 수행하였다. 선박 형상의 향상 방향은 저항성능 향상의 관점이며, 특히 선박의 형상과 밀접한 관계를 가지는 조파저항성능을 향상하기 위한 선박 형상 설계 자동화를 수행하였다. 본 연구의 목적을 실현하기 위하여 최적화 기법과 저항 성능을 예측하는 기법 그리고 선형의 형상을 변경하는 기법을 접목하여 선박 형상 설계 자동화 소프트웨어를 개발하였으며, 개발된 소프트웨어를 대상선박에 적용하였다. 최적화 기법으로는 순차이차계획법(sequential quadratic programming method)를 사용하였으며, 조파저항성능을 예측하기 위하여 포텐셜기저 패널법(potential-based panel method)을 사용하였다. 선박 형상의 변경은 가우시안형 수정함수법(Gaussian-type modification function method)를 개발하여 적용하였다. 개발된 소프트웨어를 사용하여 대상선박의 서로 다른 두 가지 선속에 대하여 설계를 수행하고 그 결과를 서로 비교하였다. 그리고 개발된 프로그램의 타당성을 검증하기 위하여 모형시험을 수행하여 구한 실험값과 수치해석을 수행하여 구한 계산값을 서로 비교하였다.

선박의 유체동역학 특성 및 엔진 모드를 고려한 에너지효율운항지수 추정 프레임워크 개발 (Development of a Framework to Estimate the EEOI of a Ship Considering the Hydrodynamic Characteristics and Engine Mode)

  • 유영준;박홍래
    • 대한조선학회논문집
    • /
    • 제55권6호
    • /
    • pp.457-465
    • /
    • 2018
  • Since IMO has discussed the effectuation of the EEDI, EEOI and SEEMP, each country, shipping company, shipbuilding company and research institute have been requested to prepare the design, construction and operation of the efficient ship. From the shipbuilding company's point of view, it was necessary to develop a method based on the maneuvering equations of motion in a bid to estimate the EEOI considering the design, model test results and the calculation results of the ship. In this paper, the estimation method of RPM, power and fuel consumption proposed in the previous research was developed to construct a framework that helps in the estimation of the EEOI. It was possible to estimate the EEOI from the estimated ship speed (distance), LNG cargo mass, fuel consumptions and emission factors according to the type of fuel. The rapid increase of the evaluated EEOI was observed when the LNGC with ME-GI engine executing the course changed with a large difference. This prompted the comparison of the type of fuel on the estimated EEOI by considering HFO, LNG fuel and MGO properties.

조선 중일정계획시스템을 위한 공정계획 객체 설계에 관한연구

  • 최해주;박주철
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2001년도 추계학술대회 논문집
    • /
    • pp.290-293
    • /
    • 2001
  • The mid-schedule planning of the ship is making a schedule about the process from cutting to erection. The ship consists of lots of blocks. This block has different process because of the shape of the block varies in accordance with the ship-type and the part position of the ship. The type and order of each block process initially must be generated for the mid-schedule planning. In this paper, the process planning, described as above is preparing the basic information before scheduler make a plan with the prepared manhour. The scheduling is done with this process planning which includes the information of the process order. This paper shows the research about three methods to design the process planning. First, investigate the expression method about information of the process planning for the mid-schedule planning in real workplace. Second, design the object of the process planning on the basis of investigating the expression method. Finally, develop the prototype of object on the basis of this designed process planning and then find the practical use in the mid-schedule planning. The object, which is developed in this paper, contains the main algorithm. In case of developing The Mid-Schedule Planning System, this object is expected to be utilized very easily as consisting another object.

  • PDF

Application of superconductor technology to electromagnetic ship propulsion system

  • Lee Seung-Hwan
    • 한국항해항만학회지
    • /
    • 제29권4호
    • /
    • pp.335-339
    • /
    • 2005
  • The superconducting electromagnetic propulsion system has been proposed as one of new alternative propulsion systems. Especially, the helical-type propulsion system has the greatest merit that is able to use the solenoid-type superconducting magnets with high magnetic fields. In this study, calculations of characteristics of the large scale helical-type thruster are carried out on the basis of our experimental results. As a couple of results of calculations, it is found that the thruster efficiency quickly increases with the length of electrode up to about 5 m and then goes up to about 0.9. The thruster efficiency peaks at a certain point ($^{\sim}0.6\;m$) and then falls as length of pitch increases.

파일형 선박 충돌방호공의 거동특성 연구 (Study on Behavior Characteristics of a Pile-Type Vessel Collision Protective Structure)

  • 이계희;이정우
    • 한국재난정보학회 논문집
    • /
    • 제7권1호
    • /
    • pp.75-85
    • /
    • 2011
  • 본 논문에서는 파일형 선박충돌방호공에 선박이 충돌하였을 때 거동을 해석하였다. 충돌방호공은 슬래브, RCP말뚝 및 이를 지지하는 지반을 비선형스프링으로 모델링하였다. 선박의 선수는 탄소성거동을 하는 쉘요소로 모델링하였으며, 선체부는 충격 시 변형이 크게 발생하지 않으므로 선형재료로 고체요소를 이용하여 모델링을 하였다. 선박의 중량의 변화에 따른 거동특성을 파악하기 위해 선박의 질량을 DWT 10000 부터 DWT 25000까지 5000씩 증가시켜 해석을 수행하였다. 또한 선박과 방호공의 충돌은 정면충돌로 고려하였으며, 충돌 속도는 5knot로 가정하였다. 선박과 방호공과의 충돌 해석은 비선형 해석 프로그램인 ABAQUS/Explicit을 이용하여 수행하였으며, 이를 통하여 선박 충돌 시 방호공의 에너지 거동을 분석하였다. 해석결과 선박의 중량이 증가할수록 선수와 슬래브의 변형에 의한 소성 소산 에너지량이 증가하는 것을 확인할 수 있었다.