• 제목/요약/키워드: Two-fluid equation

검색결과 422건 처리시간 0.025초

조화유동을 갖는 직선 파이프의 매개변수공진 해석 (Parametric and Combination Resonances of at Straight Pipe with Pulsatile Flow)

  • 홍성철
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1588-1595
    • /
    • 2006
  • The stabilities of a pinned-pinned straight pipe conveying fluid are investigated by complexification-averaging method. The flow is assumed to vary harmonically about a constant mean velocity. Instability conditions of a governing equation are analytically obtained about parametric primary, secondary and combination resonances. The resulted stability conditions show that instabilities exist when the frequency of flow fluctuation is close to one and two times the natural frequency or to the sum of any two natural frequencies. In case that the fluctuated flow frequency is close to the difference of two natural frequencies, instabilities does not exist.

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

Rheological behavior of dilute bubble suspensions in polyol

  • Lim, Yun-Mee;Dongjin Seo;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제16권1호
    • /
    • pp.47-54
    • /
    • 2004
  • Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers(Ca) of the order of $10^{-2}$ ~ $10^{-1}$ and for various gas volume fractions ($\phi$). Effects of capillary numbers and gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity of the suspension increases as the gas volume fraction increases, while at low capillary number, the viscosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by a circular cylinder in the two dimensional analysis, numerical results are in good agreement with experimental results.

NURBS를 이용한 S형 천음속 흡입관 최적 설계 (OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS)

  • 이병준;김종암
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발 (DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES)

  • 양태호;권오준
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

Effects of Surface Radiation on the Unsteady Natural Convection in a Rectangular Enclosure

  • Baek, Seung-Wook;Kim, Taig-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권1호
    • /
    • pp.95-104
    • /
    • 2002
  • Numerical solution of the full Navier-Stokes equation as well as the energy equation has been obtained for the unsteady natural convection in a rectangular enclosure. One side wall was maintained at very high temperature simulating fires. Especially the effect of surface radiation was taken into account. While the enclosed air was assumed to be transparent, the internal walls directly interacted one another through the surface radiation. Due to a significant temperature difference in the flow field, the equation of state was used instead of the Boussinesq approximation. It was found that the rapid heating of the adiabatic ceiling and floor by the incoming radiation from the hot wall made the evolution at thermo-fluid field highly unstable in the initial period. Therefore, the secondary cells brought about at the floor region greatly affected the heat transfer mechanism inside the enclosure. The heat transfer rate was augmented by the radiation, resulting in requiring less time for the flow to reach the steady state. At the steady state neglecting radiation two internal hydraulic jumps were clearly observed in upper/left as well as in lower/right comer. However, the hydraulic jump in the lower/right comer could not be observed for the case including radiation due to its high momentum flow over the bottom wall. Radiation resulted in a faster establishment of the steady state phenomena.

세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성 (Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing)

  • 이동현;김영철;김병옥;안국영;이영덕
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

The Apparent Digestibility of Corn By-products for Growing-finishing Pigs In vivo and In vitro

  • Guo, Liang;Piao, Xiangshu;Li, Defa;Li, Songyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.379-385
    • /
    • 2004
  • Two trials in vivo and in vitro were conducted, in vivo to determine the apparent digestibility of gross energy, crude protein, dry matter, acid detergent fiber, neutral detergent fiber and apparent digestible energy in 10 corn by-products. In vivo the diets included one basal corn diet, four corn gluten meal diets, four corn distillers dried grains with solubles diets and two corn distillers dried grains diets using the different methods, 12 crossbred barrows weigh $40{\pm}$1.6 kg were allocated into individual metabolic crate, according to a $6{\times}6$ Latin square design. In vitro using flask technique, filter bag technique and dialysis tubing technique, the digestibilities of gross energy, crude protein and dry matter in corn gluten meal and corn distillers dried grains with solubles were investigated. Pepsin, pancreatin, intestinal fluid, rumen fluid and cellulase were used in incubation. The results showed that correlation coefficient was 0.73 in corn distillers dried grains with solubles between the digestibility of crude protein and acid detergent fiber in vivo (p<0.01); and correlation coefficient was 0.68 in corn distillers dried grains with solubles between the digestibility of gross energy and neutral detergent fiber in vivo (p<0.01). Apparent digestible energy (DE) of corn by-products in pig total tract was predicted by the percentage of crude protein (CP) and the content of gross energy (GE) in feedstuff. The equation: DE=5,601.09+26.69$\times$CP %-0.5904$\times$GE, ($R^2=0.72$). In vitro, filter bag technique was more convenient; furthermore, the digestibility for the treatments (pepsin+pancreatin+rumen fluid and pepsin+pancreatin+cellulase) was better.