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Rheological behavior of dilute bubble suspensions in polyol
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Abstract

Low Reynolds number, dilute, and surfactant-free bubble suspensions are prepared by mechanical mixing
after introducing carbon dioxide bubbles into a Newtonian liquid, polyol. The apparent shear viscosity is
measured with a wide-gap parallel plate rheometer by imposing a simple shear flow of capillary numbers
(Ca) of the order of 10~ ~ 10" and for various gas volume fractions (¢). Effects of capillary numbers and
gas volume fractions on the viscosity of polyol foam are investigated. At high capillary number, viscosity
of the suspension increases as the gas volume fraction increases, while at low capillary number, the vis-
cosity decreases as the gas volume fraction increases. An empirical constitutive equation that is similar to
the Frankel and Acrivos equation is proposed by fitting experimental data. A numerical simulation for
deformation of a single bubble suspended in a Newtonian fluid is conducted by using a newly developed
two-dimensional numerical code using a finite volume method (FVM). Although the bubble is treated by
a circular cylinder in the two dimensional analysis, numerical results are in good agreement with exper-
imental results.
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1.. Introduction

The rheological behavior of bubble suspensions has been
studied intensively because of its practical significance and
complexity of the phenomena. For example, polyurethane
foams have been studied for various practical applications
(Park and Youn, 1992; Cho er al., 1994; Park and Youn,
-995:; Youn and Park, 1999; Kim and Youn, 2000; Koo et
al., 2001; Lee et al., 2002). By adding gaseous bubbles into
@ Newtonian fluid, the bubble suspension exhibits non-
Newtonian behaviors, such as elastic effects and shear- and
time-dependent viscosity (Macosko, 1994). The rheolog-
ical behavior of bubble suspensions can be characterized
by two dimensionless parameters: the volume fraction of
bubbles in suspension (¢) and the capillary number (Ca).
"The capillary number is defined as Ca = uy/I" where U is
the viscosity of the suspending fluid, ¥ is the shear rate, r
is the radius of the undeformed spherical bubble, and I'is
the surface tension.

A semi-empirical constitutive model and experimental
results for bubble suspensions with gas volume fractions
less than 0.5 and small bubble deformation was recently
suggested by Llewellin ez al. (2002). The constitutive equa-
tion proposed by their model was similar to the linear Jef-
fireys model. It involved viscosity of the continuous phase,
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gas volume fraction, relaxation time, bubble size distri-
bution, and empirically determined dimensionless con-
stants. Their experiments showed the effect of volume
fraction and the frequency of oscillation on the elastic and
viscous components of the deformation: the viscosity of
the suspension increases as the volume fraction increases at
low frequency, while it decreases as the volume fraction
increases at high frequency. Rust and Manga (2002) stud-
ied the relative viscosity (the ratio of the viscosity of the
suspension to the viscosity of the suspending fluid) of low
Reynolds number, dilute, and surfactant-free bubble sus-
pensions in simple shear flow by using a Couette rheom-
eter. The relative viscosity was greater than 1 at low
capillary number and less than | at high capillary number.
The suspensions showed shear thinning behavior around
the capillary number of order 1.

There have been few studies reported on bubble sus-
pensions by using a numerical method because of diffi-
culties in numerical treatments, e.g., moving interface
modeling, treatment of surface tension, and very small vis-
cosity ratio. The viscosity ratio is defined as the ratio of
viscosity between the suspended fluid and the suspending
fluid. Loewenberg and Hinch (1996) conducted three-
dimensional numerical simulation of a concentrated emul-
sion in shear flow at low Reyonlds numbers and finite cap-
illary numbers. They wused the boundary integral
formulation with moving vertices along with the local fluid
velocity. Their results were obtained for the volume frac-
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tions up to 30% and the viscosity ratios in the range of 0
to 5. Cristini et al. (1998) carried out a numerical research
about drop breakup in three-dimensional viscous flows by
using boundary integral algorithms. Renardy and Cristini
(2001) studied the effect of inertia on drop breakup under
shear deformation by using a volume-of-fluid (VOF) con-
tinuous surface force algorithm. Although high Reynolds
number is assumed for the numerical results on the behav-
ior of the drop in liquid, the same density and viscosity are
selected for both the drop and the liquid. So it was difficult
to apply those results to bubble suspensions directly.
Renardy et al. (2002) studied the drop deformation under
shear flow at a low viscosity ratio and the effect of sur-
factants. The drop and the suspending fluid had equal den-
sity and viscosity ratio of 0.05. They used a VOF method
to track the interfaces based on a piecewise linear recon-
struction and a continuum method for modeling the inter-
facial tension. Anyway there are few reports on bubble
suspensions for high capillary number and small viscosity
ratio.

In this study the rheological behavior of dilute bubble
suspensions in polyol was investigated. Various suspending
fluids were prepared with different volume fractions and
bubble radii, and the shear viscosity was measured with a
wide-gap parallel plate theometer. In addition to the exper-
iment, we performed a numerical simulation of single bub-
ble deformation between two shearing parallel plates by
using a finite volume method. A two-dimensional numer-
ical code was formulated with a multigrid algorithm, and
deformed bubble shapes, pressure, and velocity fields were
obtained with respect to time for high capillary number and
small viscosity ratio.

2. Experiments

2.1. Preparation of bubble suspensions

The suspending fluid used in our experiment is propylene
oxide based polyol that is surfactant free. Polyol shows
Newtonian behavior with the viscosity of 17 Pa - s and the
density of 1070 kg/m’ at room temperature. Suspensions
are prepared by mechanical mixing after carbon dioxide
gas is injected into polyol. Compressed carbon dioxide
gases are supplied to the polyol from the end of a hollow
tube and the beater breaks the emerging gas bubbles into
numerous small ones by rotating the shaft. A schematic
diagram for the formation of spherical bubbles is shown in
Fig. 1.

Gas volume fractions are adjustable by controlling stir-
ring time. Increasing stirring time leads to increase in the
gas volume fraction. It is difficult to achieve large vol-
ume fraction because of the lack of surfactants and the
low viscosity of polyol. In this study, volume fractions of
the prepared suspensions are 0.047, 0.073, 0.114, and
0.146.
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Fig. 1. Schematic diagram of the experimental set-up used for
generation of bubble suspension.

2.2. Measurements of rheological properties

After suspensions are prepared, they are transferred to
the BROOKFIELD DV-II+ viscometer with rotating wide-
gap parallel plates and shear viscosity under the imposed
shear rate is measured. All experiments are performed at
22.0+0.2°C. In order to neglect inertia effects, the shear
rates applied in our tests are 0.34, 0.69, 1.39, and 2.78 (s™
such that the maximum Reynolds number was less than
107

To measure the bubble size distribution, suspensions are
pressed between two glass plates with (.2 mm gap. Digital
images are taken by using a polarized optical microscope
with 50x magnification. A typical image contains about
120 bubbles with radii ranging from 8 to 500 pum. Average
bubble radius is calculated from the radius distribution at
each volume fraction.

According to the Hadamard-Rybczynski (Llewellin ez
al., 2002), bubble rising during the experiments can be
ignored if the maximum test duration is within about 3
minutes when the largest bubble radius in suspension is
500 um.

3. Numerical modeling

In this study, we used a pressure based finite volume
method for unstructured meshes that includes the SIMPLE
algorithm (Patankar, 1981) for two-dimensional fluid flow
problem. Cell-based, co-located storage is used for all
physical variables. For treating the moving interface, an
explicit high resolution scheme that is similar to the CIC-
SAM method (Ubbink and Issa, 1999) is used. The bubble
suspension is modeled as two phases of incompressible
Newtonian fluids with different viscosities.

Computational domain is filled with two different fluids,
suspending fluid and air, and has a moving interface.
Assuming an isothermal incompressible Newtonian fluid,
general governing equations can be written as follows:

Continuity : V-v=0 (1)
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Momentum Equation : p(%l;+v-Vv) = Vp+uViv+f; (2)
where p is density, ¢ is time, v is the velocity vector, p is
pressure, ( is the viscosity, and f; is the force due to sur-
face tension.

In order to track the interface between suspending fluid
and air, the fractional volume function fix, 1) is defined
such that

1 for the point (x, ) filled with fluid

0 for the point (x, 1) filled with air 3)

flx,1) ={
The fractional volume function is governed by a scalar
advection equation,

g{w-Vf:O (@)

'This equation is solved explicitly by combining the Hyper-
~ scheme and the ULTIMATE-QUICKEST scheme
Leonard, 1991). The interface is located within the cells
wvhose average value of f lies between O and 1.

For these cells, material properties such as viscosity and
Jensity are interpolated by using the following equations.

‘u=‘umf+ .ua(l _f) (5)

pP= pnf'*' pa(l _f) (6)

where the subscript m and a represent the suspending fluid
ind air, respectively.

Surface tension force is formulated with the continuum
surface force (CSF) concept (Brackbill er al., 1993) and
ziven by

- . Xﬁ)
o=V %
More detailed numerical schemes are described in the pre-
vious paper (Seo et al., 2003). In addition, multigrid algo-
4thms (Yan and Thiele, 1998) are incorporated into the
aumerical code to increase the rate of convergence and
«educe the calculation time compared with equivalent sin-
sle-grid schemes.

1. Results and discussion

1.1. Experimental results

Average bubble radius of each volume fraction is cal-
culated from radius distribution. Optical micrographs of
subbles and radius distribution at ¢ =0.114 are shown in
Fig. 2. The suspensions are polydispersed and there is a
linear relationship between the average bubble radius and
the volume fraction as shown in Fig. 3. As volume fraction
increases, the average bubble radius decreases due to
sreakage of gas bubbles into small bubbles during prep-
aration of bubble suspension. The relationship is presented
as follows:
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Fig. 2. Optical micrographs of bubbles and radius distribution at
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Fig. 3. Relationship between average bubble radius and volume
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where r,,, is the average radius of the bubble.

Relative viscosity variation with respect to the capillary
number at each volume fraction is shown in Fig. 4. The
experiments have been carried out for small range of cap-
illary numbers due to the difficulties in experiments. There
is no breakage of bubbles under shear flow during exper-
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Fig. 4. Variation of relative viscosity with respect to different cap-
illary numbers.

iments because the capillary number is much less than the
critical capillary number (Ca.;) where bubble breakup
occurs. Ca,,; for bubble suspension is known to be greater
than 1000 in a simple shear flow (Tucker and Moldenaers,
2002). Therefore the change of capillary number can be
considered as that of shear rate. The suspensions show
shear thinning behavior although the suspending fluid is
Newtonian, which is caused by the bubble deformation in
shear flow. The suspending fluid flows easier when the
bubble deformation becomes larger, so the relative vis-
cosity decreases as the shear rate increases.

It has been reported that relative viscosity at low and high
capillary number has constant value. Relative viscosity is
(1+ ¢) at low capillary number according to the Taylor
(1932) and (1 — 5/3¢) at high capillary number according
to the Mackenzie (1950). But constant relative viscosity at
low capillary number was not observed in this study. It
may be caused by the polydispersity of the suspensions
(Llewellin er al., 2002). We plotted the relative viscosity
with respect to the volume fraction at two different shear
rates in order to investigate the effect of volume fraction on
relative viscosity. As shown in Fig. 5, increasing volume
fraction leads to an increase in viscosity at low shear rates,
whereas viscosity decreases as volume fraction increases at
high shear rates. These results can be represented as the
following equations:

n, = 1+%¢ at ¥=0.34 s~ &)
1= 1—%¢ at y=278 s (10)

where 17, is the relative viscosity. The difference between
the measured value and the theoretical predictions by Tay-
lor and Mackenzie is due to the hydrodynamic interaction
between bubbles, polydispersity of bubbles, and the buoy-
ant effect that causes many bubble to exist right below the
upper plate of the parallel plate viscometer. At low cap-
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Fig. 5. Effects of the volume fraction on the relative viscosity for
different shear rates.

illary number or low shear rate, restoring force by surface
tension is larger than viscous force so that the shape of
bubbles changes rarely and is almost maintained as a
sphere. Therefore, the bubbles act as obstacles against the
flow. On the other hand, bubbles deform with flow at high
capillary numbers so that the negligible viscosity of air
compared with that of the suspending fluid causes the vis-
cosity of suspensions to decrease.

Frankel and Acrivos (1970) derived a general constitutive
equation for dilute emulsions by considering the small
deformations of a droplet in a time-dependent shearing
flow. The equation can be reproduced as

2
= 1+((6/5)Ca)2+¢(l—(iZ/S)Ca ) (1D
14((6/5)Ca)

We formulated a constitutive equation that has a similar
form to the Frankel and Acrivos equation. Although there
is no physical basis, this equation is useful as it matches the
experimental data. The general fitting equation is expressed
as the following.

a+cCa’
— 12
1+bCa’ (12)

r
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Fig. 6. Fitted curves according to the general constitutive equa-
tion and experimental data.

[n order to find a, b, and ¢ as a function of ¢, every exper-
mental data is fitted to the Equation (12) at each volume
fraction. Relationship between each parameter and the vol-
ame fraction is obtained as below.

a=122+¢ (13)
1%:0.92-0.5«;) (14)
bh=239+4123¢ (15)

So the general constitutive equation is represented as

2
1.224¢+(22.1 +369¢—202¢2)(19—6Ca)

m= (16)

16 . Y
1+(23.9+4129)| 5Ca

Fig. 6 shows the experimental data and the above general
constitutive equation with respect to each volume fraction.

4.2. Numerical results

Shearing of a bubble between two parallel plates is mod-
:led numerically as shown in Fig. 7. The upper and lower
plates move in opposite direction with the same speed of
U/2. The distance between the plates, d, is 0.5 m and the
length of plates, L, is 1 m. The bubble diameter, 2r, is 0.3
or 0.2 m and located at the center between the two plates.
So the volume fraction of the bubble, ¢, is 0.15 or 0.064.
For convergence of numerical simulation, density of fluid
and bubble is set to the same value of 0.1 kg/m®, which are
aot realistic but will not affect the solution because the
creeping flow is considered. Viscosities of the fluid and the
subble are assumed to be 10000 Pa-s and 100 Pa-s
cespectively, so that the viscosity ratio A = 0.01. We tested
osther cases where the viscosity ratio is up to 0.001, but
‘here was no difference in solution and it took longer time
1o obtain converged solutions. For the system of bubble
suspension, capillary number and Reynolds number are
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Fig. 7. Two-dimensional finite volume analysis for a single bub-
ble suspended in a Newtonian fluid assuming simple
shear flow: (a) geometry used for numerical simulation
and (b) Initial bubble shape with ¢ =0.15 and mesh with
3861 nodes and 7168 elements.

defined as follows

. 2
Rez%ﬂﬂﬁ%’;_’ (18)

Here U is 0.1 m/s so that Re is small enough to assume
creeping flow. Periodic boundary condition is applied to
the left and right side of the computational domain. Fig.
7(b) shows the initial bubble shape with ¢=0.15 and the
finite volume mesh with 3861 nodes and 7168 elements.
We obtained the mesh-independent solution at high cap-
illary number, but finer mesh yielded better solution at low
capillary number. Therefore we exclude the results at Ca <
0.1 because it took too long to run our code in the Pentium
I PC.

When the surface tension is large (low Ca), it is difficult
to achieve convergence and obtain physically meaningful
solutions due to the mesh dependence of the solution. In
the case of large surface tension, small wiggles in the sur-
face result in large changes in the solutions. Shapes of the
deformed bubble with ¢ = 0.15 in 8 seconds are shown in
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Fig. 8. Shape of the deformed bubble with ¢=0.15 at t=8 s; (a) Ca=10, (b) Ca=1, (¢) Ca=0.1, and (d) Ca=0.01.
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Fig. 8 for different capillary numbers. As surface tension
increases, the bubble resists deforming from its original
spherical shape. In the case of Ca = 0.01, the bubble shape
is almost the same as the sphere. Fig. 9 represents the pres-
sure fields of the entire domain at two different times and
capillary numbers when the bubble with the volume frac-
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tion of 0.15 is sheared. The pressure is represented as the
gray contour plot. Due to surface tension, pressure inside
of the bubble is higher than suspending fluid. The assump-
tion that the air bubble is incompressible is acceptable
because the average pressure around the bubble changes so
little that the volume change of the air bubble is negligible
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‘Fig. 10. Transient variation of the relative viscosity for different
capillary number assuming simple shear flow.

during the simple shear flow. Right after the bubble begins
10 deform, pressure is low in the upwind region of the bub-
ble because viscosity decreases drastically across the inter-
“ace between air and suspending fluid. On the other hand,
pressure is high in the downwind region. After the bubble
is completely deformed, the pressure at the wall near the
bubble increases due to the surface tension.

Fig. 10 shows the transient behavior of the relative vis-
cosity for shearing a two-dimensional bubble. The relative
iscosity was calculated during the simulation from the
wall shear stress of the upper plate, which was divided by
applied shear rate. For ¢=0.15 and Ca = 10, the relative
viscosity is about 0.80 initially and decreases with time. It
means that less viscous dissipation occurs in the suspend-
ing fluid because the region where the flow changes its
direction decreases as the bubble is deformed. For other
cases, the relative viscosity increases a small amount with
time and reaches a constant value. The reason is that the
1estoring force from the deformed bubble to its original
shape keeps bubble from deformation so that the effects of
the viscous dissipation and the surface tension on the vis-
cosity become constant.

As we already mentioned in experimental results, the rel-
ative viscosity decreases more rapidly as the volume frac-
tion increases in high capillary numbers. Fig. 11 shows the
relative viscosities with respect to the capillary number.
"The simulation results are compared with the results from
general equation determined based on experimental data
and the Frankel and Acrivos equation. For the high cap-
illary number and ¢ = 0.15, the relative viscosity predicted
by the numerical simulation is about 0.80, but Frankel and
Acrivos equation yields about 0.77. The numerical sim-
ulation is based on a two-dimensional approach where the
bubble is considered as a long circular cylinder. The inter-
actions between the bubble and the plates exist in our sim-
tilation. Furthermore polydispersity of the bubbles and the
interactions between bubbles are not considered numeri-
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Fig. 11. Effects of capillary number on the relative viscosity
when the bubble is slightly deformed.

cally. Therefore numerical results cannot be compared with
experimental results directly. Despite of these limitations,
simulation results agree well with the general constitutive
equation for high capillary numbers.

5. Conclusions

The viscosity of a polyol foam was measured in the case
of low capillary numbers and various bubble volume frac-
tions. Dilute bubble suspension in polyol shows shear thin-
ning behavior. At low capillary number, increasing bubble
volume fraction leads to an increase in viscosity, whereas
at relatively high capillary number, viscosity decreases as
bubble volume fraction increases. The general constitutive
equation based on Frankel and Acrivos equation was
derived as a function of bubble volume fraction and cap-
illary number. Two dimensional numerical simulation was
developed and carried out for high capillary number of
unsteady region. Although numerical simulation has some
restrictions, the numerical results are in good agreement
with the experimental data. Three dimensional numerical
simulation that can consider interactions between bubbles
will be developed in the future work.
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