• 제목/요약/키워드: Two-dimensional material

검색결과 994건 처리시간 0.029초

The Seventeen Plane Groups (Two-dimensional Space Groups)

  • 김진규;김윤중;김영상;고재중;강상욱;한원식;서일환
    • 한국결정학회지
    • /
    • 제16권1호
    • /
    • pp.11-20
    • /
    • 2005
  • Two-dimensional lattice에 존재하는 6가지 기본대칭과 5개의 Bravais lattice를 유도하였고 10개의 two-dimensional point groups를 5개의 각 Bravais lattice에 따라 분류하였다. 마지막으로 10개 point groups에 속한 17 two-dimensional space groups를 고찰하였다.

체커보드 형상을 가진 3차원 복합소재의 연결도와 전도율 (Connectivity and Conductivity of a Three-Dimensional Checkerboard-Shaped Composite Material)

  • 김인찬
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.189-198
    • /
    • 2004
  • We consider the problem of whether the three-dimensional checkerboard has the connectivity. For this purpose, we first consider the problem of determining the effective conductivity of a checkerboard-shaped composite material by the Brownian motion simulation method. Specifically, we use the efficient first-passage-time technique. Simulation results show that the effective conductivity of the three-dimensional checkerboard increases faster than the two-dimensional counterpart as the contrast between the phase conductivities increases. This implies that the three-dimensional checkerboard's connectivity is stronger than the two-dimensional checkerboard's and thus each phase material of the three-dimensional checkerboard is more likely to be connected than not to be connected.

부분 가열된 무한 경사기능재료 판의 2차원 비정상 열응력 (Two-dimensional Unsteady Thermal Stresses in a partially heated infinite FGM Plate)

  • 김귀섭
    • 한국항공운항학회지
    • /
    • 제15권2호
    • /
    • pp.9-17
    • /
    • 2007
  • A Green's function approach based on the laminate theory is adopted for solving the two-dimensional unsteady temperature field and the associated thermal stresses in an infinite plate made of functionally graded material (FGM). All material properties are assumed to depend only on the coordinate x (perpendicular to the surface). The unsteady heat conduction equation is formulated into an eigenvalue problem by making use of the eigenfunction expansion theory and the laminate theory. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the two-dimensional unsteady temperature. The associated thermoelastic field is analyzed by making use of the thermal stress function. Numerical analysis for a FGM plate is carried out and effects of material properties on unsteady thermoelastic behaviors are discussed.

  • PDF

이차원 유전체 나노시트의 개발 동향 (A Brief Review on 2-Dimensional Dielectric Nanosheets)

  • 임해나;최지원
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.1-10
    • /
    • 2022
  • Two-dimensional materials have shown a great promise for the next-generation electronic materials due to their unique optical, physical, and chemical properties that are distinct from their bulk counterparts. Their atomic-level thickness, the feature for flexible tenability, and exposed huge surface allow various approaches for high-performance nanoscale devices. Especially, this review highlights the recent progress on two-dimensional dielectric nanosheets, which are obtained by cheap and massproducible solution-based exfoliation process, accompanied by the preparation methods, various deposition methods, and the characteristics of devices using a dielectric nanosheet thin films. We also present a perspective on the advantages offered by this two-dimensional dielectric nanosheets for the upcoming future nanoelectonics.

Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides

  • Jung, Yeonjoon;Ji, Eunji;Capasso, Andrea;Lee, Gwan-Hyoung
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.24-36
    • /
    • 2019
  • Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.

액정박막에서의 2차원 상전이 (Two dimensional Phase Transition of Liquid Crystal Film)

  • 정치섭;;김만원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 춘계학술대회 논문집
    • /
    • pp.119-121
    • /
    • 1993
  • Two dimensional phase transition and three dimensional propagation of layer structures of liquid crystal film are investigated by using surface second harmonic generation method. We have found a distinctive first order phase transition between a monolayer phase and a stable 3-layer phase of 8CB liquid crystal film.

  • PDF

웹기반 재료 DB 구축 및 3D 그래프를 사용한 물성비교 (Construction of web-based material DB and comparison of material properties using 3D graph)

  • 천두만;안성훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.724-727
    • /
    • 2005
  • Material selection is one of the important activities in design and manufacturing. A selected material at the conceptual design stage affects material properties of the designed part as well as manufacturability and cost of the final product. Unfortunately there are not many accessible material databases that can be used for design. In this research, a web-based material database was constructed. In order to assist designers to compare different materials, two-dimensional and three-dimensional graphs were provided. Using these graphical tools, multi-dimensional comparison was available in more intuitive manner. To provide environmental safety of materials, the database included National Fire Protection Association publication Standard No.704. The web-based tool is available at http://fab.snu.ac.kr/matdb.

  • PDF

웹기반 재료 데이터베이스 구축 및 자동차 엔진풀리용 재료선정 예 (Construction of Web-based Material Database and Case Study of Material Selection for Automotive Engine Pulley)

  • 천두만;안성훈;장재덕
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.107-114
    • /
    • 2006
  • Material selection is one of the important activities in design and manufacturing. A selected material at the conceptual design stage affects functionality of the designed part as well as manufacturability and cost of the final product. Unfortunately there are not many accessible material databases that can be used for design. In this research, a web-based material database was constructed. In order to assist designers to compare different materials, two-dimensional and three-dimensional graphs were provided via the web browser Using these graphical tools, multi-dimensional comparison was available in more intuitive manner. As a case study, this system was applied for material selection of an automotive engine pulley.

Free vibration analysis of thick CGFR annular sector plates resting on elastic foundations

  • Tahouneh, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.773-796
    • /
    • 2014
  • This paper deals with free vibration analysis of continuous grading fiber reinforced (CGFR) and bi-directional FG annular sector plates on two-parameter elastic foundations under various boundary conditions, based on the three-dimensional theory of elasticity. The plates with simply supported radial edges and arbitrary boundary conditions on their circular edges are considered. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. Some new results for the natural frequencies of the plate are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. Results indicate that the non-dimensional natural frequency parameter of a functionally graded fiber volume fraction is larger than that of a discrete laminated and close to that of a 2-layer. It results that the CGFR plate attains natural frequency higher than those of traditional discretely laminated composite ones and this can be a benefit when higher stiffness of the plate is the goal and that is due to the reduction in spatial mismatch of material properties. Moreover, it is shown that a graded ceramic volume fraction in two directions has a higher capability to reduce the natural frequency than conventional one-dimensional functionally graded material. The multidirectional graded material can likely be designed according to the actual requirement and it is a potential alternative to the unidirectional functionally graded material. The new results can be used as benchmark solutions for future researches.

감압화학증착법으로 성장된 실리콘-게르마늄 반도체 에피층에서 붕소의 이차원 도핑 특성 (Two Dimensional Boron Doping Properties in SiGe Semiconductor Epitaxial Layers Grown by Reduced Pressure Chemical Vapor Deposition)

  • 심규환
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1301-1307
    • /
    • 2004
  • Reduced pressure chemical vapor deposition(RPCYD) technology has been investigated for the growth of SiGe epitaxial films with two dimensional in-situ doped boron impurities. The two dimensional $\delta$-doped impurities can supply high mobility carriers into the channel of SiGe heterostructure MOSFETs(HMOS). Process parameters including substrate temperature, flow rate of dopant gas, and structure of epitaxial layers presented significant influence on the shape of two dimensional dopant distribution. Weak bonds of germanium hydrides could promote high incorporation efficiency of boron atoms on film surface. Meanwhile the negligible diffusion coefficient in SiGe prohibits the dispersion of boron atoms: that is, very sharp, well defined two-dimensional doping could be obtained within a few atomic layers. Peak concentration and full-width-at-half-maximum of boron profiles in SiGe could be achieved in the range of 10$^{18}$ -10$^{20}$ cm$^{-3}$ and below 5 nm, respectively. These experimental results suggest that the present method is particularly suitable for HMOS devices requiring a high-precision channel for superior performance in terms of operation speed and noise levels to the present conventional CMOS technology.