• Title/Summary/Keyword: Two-beam coupling

Search Result 143, Processing Time 0.035 seconds

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

A new interpretation of two-beam energy coupling in terms of bragg diffraction in a photorefractive crystal

  • Lee, Yeon-Ho;Kim, You-Hyun;Kim, Jae-Cheo;Kim, Hyun-Sung
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.36-40
    • /
    • 1997
  • Bragg diffraction of a strong reference beam from a steady-state photorefractive grating is measured experimentally and an analytic prediction is derived from the coupled wave equations of two-beam energy coupling. The relation between Bragg diffraction and two-beam coupling is used to check the mechanism of photorefractive grating formation.

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Cyclic Behavior of Precast Slender Coupling Beams with Bundled Diagonally Reinforcement and High-Performance Fiber Reinforced Cementitious Composite(HPFRCC) (묶음 대각철근과 고성능 섬유보강 시멘트 복합체를 적용한 세장한 프리캐스트 연결보의 이력거동 평가)

  • Han, Sang Whan;Yu, Kyung Hwan;Kang, Dong Hun;Lee, Ki Hak;Shin, Myung Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • Shear wall systems behave as individual wall because of openings like window and elevator cage. When coupling beams are installed in shear walls, they will have high strength and stiffness so that be less damaged by lateral loads like earthquake. However, coupling beam is difficult construction method. And arranging reinforcement of slender coupling beams are especially hard. It is because the details of coupling beam provided by ACI 318 are complex. In this paper, experiments were conducted using coupling beams with 3.5 aspect ratio to improve the details of slender coupling beams provided by ACI 318. Two specimens were proposed for this study. One specimen applied with bundled diagonally reinforcement only. Another specimen applied both bundled diagonally reinforcement and High-Performance Fiber Reinforced Cementitious Composite (HPFRCC) so that coupling beams have half of transverse reinforcement. All specimen were compared with a coupling beam designed according to ACI 318 and were evaluated with hysteretic behaviors. Test results showed that the performance of two specimen suggested in this study were similar to that of coupling beam designed according to current criteria. And it was considered that simplification of the details of reinforcement would be available if transverse reinforcement was reduced by using bundled diagonally reinforcement and HPFRCC.

The Behavior of Reinforced Concrete Coupling Elements in Wall-Dominant System (벽식 아파트 구조에서 연결부재의 거동특성)

  • 장극관;서대원;천영수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2002
  • A common form of construction for apartment buildings consists of walls and coupling elements. But, the structural behavior of coupling elements are very complex and affected by the properties of coupling elements. The objective of this study is to estimate the behavior of coupling elements in wall-dominant systems. For the purpose of this study, two wall-slab specimens and two wall-beam specimens were tested. The specimens with different reinforcement layouts were subjected to reversed cyclic loading, consistent with coupling action, with increasing imposed inelastic deformations. From the results of this study, 1) in coupling slabs, the stresses were not uniform across the width, 2) the effective width of coupling slabs was found smaller than that of predicted from previous studies, 3) diagonally reinforced coupling beam with slab showed larger ductility and more amount of energy dissipation to be attained compared with conventionally reinforced coupling beam.

An Analysis on the Properties of Beam Coupling by Using Gaussian Beam Propagation Theory (가우시언 빔 전송 이론을 이용한 빔 결합 특성 해석)

  • Han, Seog-Tae;Kang, Jin-Man;Lee, Jeong-Won;Je, Do-Hyung;Jung, Moon-Hee;Kim, Soo-Yeon;Wi, Seog-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1324-1333
    • /
    • 2010
  • In this paper, three kinds of beam coupling losses which occur in a quasi-optics circuit for millimeter wave receiver system have been intensively investigated. First, the beam coupling losses which are caused by mismatch of beam waists radii and their positions between those of one and the other have been evaluated. It shows that beam coupling losses due to mismatch of beam waists radii and their positions between two quasi-optics circuits can be minimized if beam waist radius is chosen as larger than 3 times the operation wavelength. Second, the beam coupling losses have been studied when the axis of propagation of one beam is tilted with respect to that of the other beam. It is noted that smaller beam waist radius results in greater tolerance to tilts and angular misalignments. Third, the beam coupling cases in which two beams are offset if their axes of propagation are parallel but one is displaced relative to the other have been investigated. It is confirmed that beam waists radii with larger than 3 times operation wavelength are less sensitive to lateral offsets.

Seismic behavior of coupled wall structure with innovative quickly replaceable coupling beams

  • Li, Yong;Yu, Haifeng;Liang, Xiaoyong;Yu, Jianjun;Li, Pengcheng;Wang, Wei;Wang, Qizhi
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.293-303
    • /
    • 2022
  • In order to improve the seismic resilience of coupled wall structure, coupling beam with fuse has been developed to reduce the post-earthquake damage. However, the fuses often have a build-up I-shaped section and are relatively heavy to be replaced. Moreover, the fuse and the beam segments are usually connected by bolts and it is time-consuming to replace the damaged fuse. For reducing the repair time and cost, a novel quickly replaceable coupling beam with buckling-restrained energy dissipaters is developed. The fuse of the proposed coupling beam consists of two chord members and bar-typed energy dissipaters placed at the corners of the fuse. In this way, the weight of the energy dissipater can be greatly reduced. The energy dissipaters and the chords are connected with hinge and it is convenient to take down the damaged energy dissipater. The influence of ratio of the length of coupling beam to the length of fuse on the seismic performance of the structure is also studied. The seismic performance of the coupled wall system with the proposed coupling beam is compared with the system with reinforced concrete coupling beams. Results indicated that the weight and post-earthquake repair cost of the proposed fuse can be reduced compared with the typical I-shaped fuse. With the increase of the ratio of the beam length to the fuse length, the interstory drift of the structure is reduced while the residual fuse chord rotation is increased.

All-optical Internodal Switching in Two-mode Waveguide (이중모드 광섬유내에서의 전 광(All-optical) 모드 변환 스위칭)

  • 박희갑
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.119-122
    • /
    • 1989
  • An intermodal switch based on optically-induced (through optical Kerr effect) periodic coupling in a two-mode waveguide is described and demonstrated. A high power pump beam injected into the two modes of the waveguide produced a periodic modulation of the refractive index profile with a period of modal beat length. this causes an intermodal coupling of the prove beam. The operating principle was successfully demonstrated in an elliptical core two-mode fiber with a counter-propagating pump-probe scheme.

  • PDF

Seismic performance of moment resisting steel frames retrofitted with coupled steel plate shear walls with different link beams

  • Amir Masoumi Verki;Adolfo Preciado;Pegah Amiri Motlagh
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.591-609
    • /
    • 2023
  • In some buildings, the lateral structural response of steel framed buildings depends on the shear walls and it is very important to study the behavior of these elements under near-field seismic loads. The link beam in the opening of the shear wall between two wall plates is investigated numerically in terms of behavior and effects on frames. Based on the length of the beam and its bending and shear behavior, three types of models are constructed and analyzed, and the behavior of the frames is also compared. The results show that by reducing the length of the link beam, the base shear forces reduce about 20%. The changes in the length of the link beam have different effects on the degree of coupling. Increasing the length of the link beam increases the base shear about 15%. Also, it has both, a positive and a negative effect on the degree of coupling. The increasing strength of the coupling steel shear wall is linearly related to the yield stress of the beam materials, length, and flexural stiffness of the beam. The use of a shorter link beam will increase the additional strength and consequently improving the behavior of the coupling steel shear wall by reducing the stresses in this element. The link beam with large moment of inertia will also increase about 25% the additional strength and as a result the coefficient of behavior of the shear wall.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.