• Title/Summary/Keyword: Two-Phase Pipe Flow

Search Result 129, Processing Time 0.023 seconds

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF

Single and Two-Phase Flow Pressure Drop for CANFLEX Bundle

  • Park, Joo-Hwan;Jun, Ji-Sun;Suk, Ho-Chun;Dimmick, G.R.;Bullock, D.E.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.532-537
    • /
    • 1998
  • Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-l34a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLRX bundle is found to be about 20 % higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within ${\pm}\;5\;%$ error.

  • PDF

Software Package for Pipe Hydraulics Calculation for Single and Two Phase Flow (배관 유동의 주요 변수계산을 위한 소프트웨어 시스템의 개발)

  • Chang, Jaehun;Lee, Gunhee;Jung, Minyoung;Baek, Heumkyung;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.628-636
    • /
    • 2019
  • In various industrial processes, piping serves as a link between unit processes and is an essential installation for internal flow. Therefore, the optimum design of the piping system is very important in terms of safety and cost, which requires the estimation of the pressure drop, flow rate, pipe size, etc. in the piping system. In this study, we developed a software that determines pressure drop, flow rate, and pipe size when any two of these design variables are known. We categorized the flows into single phase, homogeneous two phase, and separated two phase flows, and applied suitable calculation models accordingly. We also constructed a system library for the calculation of the pipe material, relative roughness, fluid property, and friction coefficients to minimize user input. We further created a costing library according to the piping material for the calculation of the investment cost of the pipe per unit length. We implemented all these functions in an integrated environment using a graphical user interface for user convenience, and C # programming language. Finally, we verified the accuracy of the software using literature data and examples from an industrial process with obtained deviations of 1% and 8.8% for the single phase and two-phase models.

Improved Convective Heat Transfer Correlations for Two-Phase Two-Component Pipe Flow

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.403-422
    • /
    • 2002
  • In this study, six two-phase nonboiling heat transfer correlations obtained from the recommendations of our previous work were assessed. These correlations were modified using seven extensive sets of two-phase flow experimental data available from the literature, for vertical and horizontal tubes and different flow patterns and fluids. A total of 524 data points from five available experimental studies (which included the seven sets of data) were used for improvement of the six identified correlations. Based on the tabulated and graphical results of the comparisons between the predictions of the modified heat transfer correlations and the available experimental data, appropriate improved correlations for different flow patterns, tube orientations, and liquid-gas combinations were recommended.

Assessment of MARS-KS prediction capability for natural circulation flow in passive heat removal system

  • Jehee Lee;Youngjae Park;Seong-Su Jeon;Ju-Yeop Park;Hyoung Kyu Cho
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3435-3449
    • /
    • 2024
  • Considering that system analysis codes are used for the evaluation of the performance of Passive Safety Systems (PSSs), it is important to investigate the capability of the system analysis code to reliably predict the heat transfer and natural circulation flow, which are the main phenomena governing the performance of a PSS. Since MARS-KS has been widely validated for heat transfer models, this study focuses on evaluating its capability to predict the single and two-phase pressure drops and natural circulation flow. The straight pipe simulation results indicate that the pressure drop predictions are reliable within ±5 % error margin for the single-phase flow and the errors of pressure drop up to - 30 % for the two-phase flow. Through single-phase natural circulation flow analysis, it is concluded that the use of the appropriate K-factor modeling based on the flow regimes is important since the natural circulation flow rate in MARS-KS is mainly affected by the form loss factor modeling. With two-phase natural circulation flow analysis, this study emphasizes the behavior of the system could change significantly depending on the two-phase wall friction and pressure loss modeling. With the analysis results, modeling considerations for the PSS performance evaluation with the system analysis codes are proposed.

AVERAGE LIQUID LEVEL AND PRESSURE DROP FOR COUNTERCURRENT STRATIFIED TWO-PHASE FLOW

  • Kim, Yang-Seok;Yu, Seon-Oh;Chun, Moon-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.301-306
    • /
    • 1996
  • To predict the average liquid level under the condition of the countercurrent stratified two-phase flow in a pipe, an analytical model has been suggested. This is made by introducing the interfacial level gradient into the liquid-phase and the gas-phase momentum equations. The analytical method for the gas-phase pressure drop calculation with f$_i$ $\neq$ f$_G$ has also been described using the liquid level prediction model developed in the present study.

  • PDF

Determination of Flow Patterns for Multi-Phase Flow in Petroleum Production Systems (석유생산 시스템에서 다상유동의 패턴 결정)

  • Lee, Kun-Sang;Kim, Hyun-Tae
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • A comprehensive mechanistic model has been used to determine the flow pattern for gas-oil two-phase flow in pipes of petroleum production system. Depending on operational parameters, geometrical variables, and physical properties of the two phases, the two phases shows a specific flow patterns. For different parameters of the system, How pattern were compared for wide range of superficial velocities of oil and gas. In a variety of parameters, the inclinational angle and superficial velocities of oil and gas are the most dominant factors in determining the flow patterns for two-phase flow in pipelines. Other parameters such as pipe diameter and fluid properties have a limited effect on the change of flow patterns except for near transition. The mechanistic model is shown to be useful to determine the flow pattern in situations where either an experimental evaluation in a laboratory or reliable correlations are not available.

Analysis for Thermal Performance of Axially Grooved Heat Pipe for Solar Collector (그루브형 태양열 집열용 히트파이프의 열성능 해석)

  • Hong, J.K.;Suh, J.S.;Byon, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2123-2128
    • /
    • 2004
  • In this study, analysis is made for the effects of groove shape on the thermal performance of a axial groove heat pipe. The mathematical models of two-phase flow in grooved heat pipe are presented for the capillary limitation in steady state. Generally, the heat pipe performance depends on the capillary pressure and liquid flow. The friction force of liquid flow through the groove increases with the groove width decreased, and then the capillary pressure is improved in the gas-liquid interface of groove. Therefore, the optimal groove width shaper exists for the maximum thermal performance of heat pipe. In this paper, the optimal groove shape and scale are presented by considering both capillary pressure and liquid flow.

  • PDF

An Experimental Investigation on the Behavior of Water-Air Two-phase Flows in a Horizontal Pipe (수평관 내 물-공기 이상류 거동에 관한 실험적 연구)

  • Cho, Hanil;Lee, Kyungsu;Lyu, Siwan
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.75-81
    • /
    • 2017
  • A series of laboratory experiments has been performed in order to investigate the behavior of water-air two-phase flow in a horizontal pipe. A conductivity meter has been applied to detect the irregular alternation of air at the specific points in flows. The experimental condition has been established according to the water and air flowrates. Passing time, which is the time length for a measuring probe to pass through the entire length of a specific bubble, has been defined to evaluate the size of bubbles in the flow. Passing length, which can be considered as the equivalent value to bubble size and determined from the product of passing time and cross-sectional averaged velocity, and its corresponding occurrence frequency have been analyzed to classify the air flow patterns according to the condition of air and water fluxes. From the result, the dependancy of flow patterns on the variation of air-water flux ratio has been investigated and the existence of thresholds also checked for classifying the behavior of air in the flow.

Numerical analysis on two-phase flow-induced vibrations at different flow regimes in a spiral tube

  • Guangchao Yang;Xiaofei Yu;Yixiong Zhang;Guo Chen;Shanshan Bu;Ke Zhang;Deqi Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1712-1724
    • /
    • 2024
  • Spiral tubes are used in a wide range of applications and it is significant to understand the vibration introduced by two-phase flow in spiral tubes. In this paper, the numerical method is used to study the vibration induced by the gas-liquid two-phase flow in a spiral tube with different flow regimes. The pressure fluctuation characteristics at the pipe wall and the solid vibration response characteristics are obtained. The results show that the motion of small bubbles in bubbly flow leads to small pressure fluctuations with low-frequency broadband (0-50 Hz). The motion of the gas plug in the plug flow causes small amplitude periodic pressure fluctuation with a shortened low-frequency broadband (0-15 Hz) compared to the bubbly flow. The motion of the gas slug in the slug flow causes large periodic fluctuations in pressure with a significant dominant frequency (6-7 Hz). The wavy flow is very stable and has a distinct main frequency (1-2 Hz). The vibration regime in the bubbly flow and wave flow are close to the first-order mode, and the vertical vibrating component is dominant. The plug flow and slug flow excite higher-order vibration modes, and the lateral vibration component plays more important part in the vibration response.