DOI QR코드

DOI QR Code

Numerical analysis on two-phase flow-induced vibrations at different flow regimes in a spiral tube

  • Guangchao Yang (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University) ;
  • Xiaofei Yu (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Yixiong Zhang (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Guo Chen (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Shanshan Bu (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University) ;
  • Ke Zhang (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Deqi Chen (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University)
  • Received : 2023.06.21
  • Accepted : 2023.12.10
  • Published : 2024.05.25

Abstract

Spiral tubes are used in a wide range of applications and it is significant to understand the vibration introduced by two-phase flow in spiral tubes. In this paper, the numerical method is used to study the vibration induced by the gas-liquid two-phase flow in a spiral tube with different flow regimes. The pressure fluctuation characteristics at the pipe wall and the solid vibration response characteristics are obtained. The results show that the motion of small bubbles in bubbly flow leads to small pressure fluctuations with low-frequency broadband (0-50 Hz). The motion of the gas plug in the plug flow causes small amplitude periodic pressure fluctuation with a shortened low-frequency broadband (0-15 Hz) compared to the bubbly flow. The motion of the gas slug in the slug flow causes large periodic fluctuations in pressure with a significant dominant frequency (6-7 Hz). The wavy flow is very stable and has a distinct main frequency (1-2 Hz). The vibration regime in the bubbly flow and wave flow are close to the first-order mode, and the vertical vibrating component is dominant. The plug flow and slug flow excite higher-order vibration modes, and the lateral vibration component plays more important part in the vibration response.

Keywords

Acknowledgement

The authors are grateful for the support of the National Natural Science Foundation of China (No. 11902315).

References

  1. T. Cong, W. Tian, G. Su, S. Qiu, Y. Xie, Y. Yao, Three-dimensional study on steady thermohydraulics characteristics in secondary side of steam generator, Prog. Nucl. Energy 70 (2014) 188-198.
  2. T. Cong, J. Wang, H. Gu, Numerical study on flow-induced vibration of LBE-cooled wire-wrapped rod bundle, Ann. Nucl. Energy 188 (2023), 109826.
  3. H. Guo, W. Li, J. Zhang, Y. Wu, M. Wang, S. Qiu, G.H. Su, W. Tian, Analysis of flow-induced vibration of wire-wrapped fuel assemblies under the liquid metal axial flow in the Gen-IV nuclear reactor, Ann. Nucl. Energy 188 (2023), 109811.
  4. S. Miwa, M. Mori, T. Hibiki, Two-phase flow induced vibration in piping systems, Prog. Nucl. Energy 78 (2015) 270-284.
  5. M. Giraudeau, N. Mureithi, M. Pettigrew, Two-phase flow-induced forces on piping in vertical upward flow: excitation mechanisms and correlation models, J. Pressure Vessel Technol. 135 (2013), 030907.
  6. M. Hossain, N.M. Chinenye-Kanu, G.M. Droubi, S.Z. Islam, Investigation of slug-churn flow induced transient excitation forces at pipe bend, J. Fluid Struct. 91 (2019), 102733.
  7. J.-L. Riverin, M. Pettigrew, Vibration excitation forces due to two-phase flow in piping elements, J. Pressure Vessel Technol. 129 (2007) 7-13.
  8. J. Riverin, E. De Langre, M. Pettigrew, Fluctuating forces caused by internal two-phase flow on bends and tees, J. Sound Vib. 298 (2006) 1088-1098.
  9. M.F. Cargnelutti, S.P. Belfroid, W. Schiferli, M. van Osch, Multiphase Fluid Structure Interaction in Bends and T-Joints, Pressure Vessels and Piping Conference, 2010, pp. 75-82.
  10. F. M, S. Cargnelutti, C. P, W. Belfroid, Schiferli, Two-phase flow-induced forces on bends in small scale tubes, J. Pressure Vessel Technol. 132 (2010), 41305.
  11. S. Belfroid, W. Schiferli, M. Cargnelutti, M. van Osch, Forces on bends and T-joints due to multiphase flow, in: BHR North American Conference on Multiphase Production Technology, BHR, 2010. BHR-2010-B2012.
  12. Y. Liu, S. Miwa, T. Hibiki, M. Ishii, H. Morita, Y. Kondoh, K. Tanimoto, Experimental study of internal two-phase flow induced fluctuating force on a 90 elbow, Chem. Eng. Sci. 76 (2012) 173-187.
  13. N.M. Asiegbu, M. Hossain, G.M. Droubi, S.Z. Islam, Investigation of the effects of pipe diameter of internal multiphase flow on pipe elbow vibration and resonance, in: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, vol. 237, 2023, pp. 1319-1330.
  14. A. Mack, H. Joshi, S. Belfroid, Numerical rebuilding of dynamic instabilities and forces in multiphase pipe bend flow, Int. J. Comput. Methods Exp. Meas. 6 (2017) 358-372.
  15. B.L. Tay, R.B. Thorpe, Hydrodynamic forces acting on pipe bends in gas-liquid slug flow, Chem. Eng. Res. Des. 92 (2014) 812-825.
  16. Z. Li, Research on the Gas-liquid Flow Regimes and Transition Mechanisms in Helically Coiled Tubes, in Chinese, Tsinghua University, Ph.D's thesis, BeiJing, China, 2020.
  17. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.
  18. J. Araujo, J. Miranda, J. Campos, CFD study of the hydrodynamics of slug flow systems: interaction between consecutive Taylor bubbles, Int. J. Chem. React. Eng. 13 (2015) 541-549.
  19. S. Ban, W. Pao, M.S. Nasif, Numerical simulation of two-phase flow regime in horizontal pipeline and its validation, Int. J. Numer. Methods Heat Fluid Flow 28 (2018) 1279-1314.
  20. P. Emmerson, M. Lewis, N. Barton, Improving boundary conditions for multiphase CFD predictions of slug flow induced forces, in: BHR International Conference on Multiphase Production Technology, BHR, 2015. BHR-2015-C2013.
  21. B.A. Nichita, I. Zun, J.R. Thome, A level set method coupled with a volume of fluid method for modeling of gas-liquid interface in bubbly flow, J. Fluid Eng. 132 (2010), 081302.
  22. X. Niu, S. Luo, L.-L. Fan, L. Zhao, Numerical simulation on the flow and heat transfer characteristics in the one-side heating helically coiled tubes, Appl. Therm. Eng. 106 (2016) 579-587.
  23. Z.-w. Wang, Y.-p. He, M.-z. Li, M. Qiu, C. Huang, Y.-d. Liu, Z. Wang, Fluid-structure interaction of two-phase flow passing through 90 pipe bend under slug pattern conditions, China Ocean Eng. 35 (2021) 914-923.
  24. Z. Yang, X.F. Peng, P. Ye, Numerical and experimental investigation of two phase flow during boiling in a coiled tube, Int. J. Heat Mass Tran. 51 (2008) 1003-1016.
  25. L. Brockmeyer, E. Merzari, J. Solberg, Y. Hassan, One-way coupled simulation of FIV in a 7-pin wire-wrapped fuel pin bundle, Nucl. Eng. Des. 356 (2020), 110367.
  26. E. Merzari, H. Yuan, A. Kraus, A. Obabko, P. Fischer, J. Solberg, S. Lee, J. Lai, M. Delgado, Y. Hassan, High-fidelity simulation of flow-induced vibrations in helical steam generators for small modular reactors, Nucl. Technol. 205 (2019) 33-47.
  27. A.O. Mohmmed, H.H. Al-Kayiem, A. Osman, O. Sabir, One-way coupled fluid-structure interaction of gas-liquid slug flow in a horizontal pipe: experiments and simulations, J. Fluid Struct. 97 (2020), 103083.
  28. H. Zhu, Z. Li, X. Yang, G. Zhu, J. Tu, S. Jiang, Flow regime identification for upward two-phase flow in helically coiled tubes, Chem. Eng. J. 308 (2017) 606-618.