DOI QR코드

DOI QR Code

Thermal-hydraulic and load following performance analysis of a heat pipe cooled reactor

  • Guanghui Jiao (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Genglei Xia (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Jianjun Wang (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Minjun Peng (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • Received : 2023.02.28
  • Accepted : 2023.12.10
  • Published : 2024.05.25

Abstract

Heat pipe cooled reactors have gained attention as a potential solution for nuclear power generation in space and deep sea applications because of their simple design, scalability, safety and reliability. However, under complex operating conditions, a control strategy for variable load operation is necessary. This paper presents a two-dimensional transient characteristics analysis program for a heat pipe cooled reactor and proposes a variable load control strategy using the recuperator bypass (CSURB). The program was verified against previous studies, and steady-state and step-load operating conditions were calculated. For normal operating condition, the predicted temperature distribution with constant heat pipe temperature boundary conditions agrees well with the literature, with a maximum temperature difference of 0.4 K. With the implementation of the control strategy using the recuperator bypass (CSURB) proposed in this paper, it becomes feasible to achieve variable load operation and return the system to a steady state solely through the self-regulation of the reactor, without the need to operate the control drum. The average temperature difference of the fuel does not exceed 1 % at the four power levels of 70 %,80 %, 90 % and 100 % Full power. The output power of the turbine can match the load change process, and the temperature difference between the inlet and outlet of the turbine increases as the power decreases.

Keywords

Acknowledgement

This work is supported by the Heilongjiang Provincial Key Laboratory of Nuclear Power System and Equipment (HLJS202207).

References

  1. D.Q. Wang, B.H. Yan, J.Y. Chen, The opportunities and challenges of micro heat piped cooled reactor system with high efficiency energy conversion units, Ann. Nucl. Energy 149 (2020), 107808.
  2. B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review, Ann. Nucl. Energy 135 (2020), 106948.
  3. W. Bo, X. Shunhao, W. Bin, W. Weibing, L. Yongchao, L. Tong, H. Shaochun, Z. Jiayi, W. Mengyao, Review of recent research on heat pipe cooled reactor, Nucl. Eng. Des. 415 (2023), 112679.
  4. D.I. Poston, The heatpipe-operated Mars exploration reactor (HOMER), in: AIP Conference Proceedings, AIP, Albuquerque, New Mexico, 2001, pp. 797-804.
  5. El-Genk, J. Tournier, "SAIRS" - scalable amtec integrated reactor space power system, Prog. Nucl. Energy 45 (2004) 25-69.
  6. J.D. Bess, A Basic LEGO Reactor Design for the Provision of Lunar Surface Power, 2008.
  7. A. Bushman, D.M. Carpenter, T.S. Ellis, S.P. Gallagher, M.C. Hine, E.D. Johnson, S. C. Kane, M.R. Presley, A.H. Roach, S. Shaikh, M.P. Short, M.A. Stawicki, The Martian Surface Reactor: an Advanced Nuclear Power Station for Manned Extraterrestrial Exploration, MIT-NSA-TR-003, 2004.
  8. P.R. Mcclure, D.I. Poston, V.R. Dasari, R.S. Reid, Design of Megawatt Power Level Heat Pipe Reactors, 2015.
  9. Ma, E. Chen, H. Yu, R. Zhong, J. Deng, X. Chai, S. Huang, S. Ding, Z. Zhang, Heat pipe failure accident analysis in megawatt heat pipe cooled reactor, Ann. Nucl. Energy 149 (2020), 107755.
  10. G. Jiao, G. Xia, H. Zhu, T. Zhou, M. Peng, Thermal-mechanical coupling characteristics and heat pipe failure analysis of heat pipe cooled space reactor, Ann. Nucl. Energy 192 (2023), 110025.
  11. M.J. Jeong, J. Im, S. Lee, H.K. Cho, Multiphysics analysis of heat pipe cooled microreactor core with adjusted heat sink temperature for thermal stress reduction using OpenFOAM coupled with neutronics and heat pipe code, Front. Energy Res. 11 (2023), 1213000.
  12. J. Zhang, T. Li, Z. Shen, X. Li, J. Xiong, X. Chai, X. Liu, T. Zhang, Investigations of multiphysics models on a megawatt-level heat pipe nuclear reactor based on high-fidelity approaches, Nucl. Sci. Eng. 0 (2023) 1-25.
  13. Y. Yuan, J. Shan, B. Zhang, J. Gou, Z. Bo, T. Lu, L. Ge, Z. Yang, Accident analysis of heat pipe cooled and AMTEC conversion space reactor system, Ann. Nucl. Energy 94 (2016) 706-715.
  14. Z. Zhang, C. Wang, K. Guo, J. Huang, S. Qiu, G.H. Su, W. Tian, HEART, a specific code for thermal-electrical analysis of heat pipe cooled nuclear reactor, Int. J. Therm. Sci. 179 (2022), 107666.
  15. Y. Ma, C. Tian, H. Yu, R. Zhong, Z. Zhang, S. Huang, J. Deng, X. Chai, Y. Yang, Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor, Prog. Nucl. Energy 140 (2021), 103904.
  16. Y. Ma, J. Liu, H. Yu, C. Tian, S. Huang, J. Deng, X. Chai, Y. Liu, X. He, Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor, Nucl. Eng. Technol. 54 (2022) 2094-2106.
  17. Y. Ma, R. Zhong, H. Yu, S. Huang, C. Tian, X. He, Z. Ouyang, J. Liu, Y. Liu, X. Chai, Startup analyses of a megawatt heat pipe cooled reactor, Prog. Nucl. Energy 153 (2022), 104405.
  18. Y. Guo, Z. Li, K. Wang, Z. Su, A transient multiphysics coupling method based on OpenFOAM for heat pipe cooled reactors, Sci. China Technol. Sci. (2021).
  19. Q. Jiang, W. Liang, Z. Zhu, Y. Li, P. Wang, Multimodel generalized predictive control of a heat-pipe reactor coupled with an open-air Brayton cycle, Energy 279 (2023), 128032.
  20. N. Stauff, A. Abdelhameed, Y. Cao, N. Kristina, Y. Miao, K. Mo, D. Nunez, Multiphysics Analysis of Load Following and Safety Transients for MicroReactors, 2022.
  21. L. Ge, H. Li, J. Shan, Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system, Ann. Nucl. Energy 130 (2019) 82-92.
  22. J.W. Sterbentz, J.E. Werner, M.G. McKellar, A.J. Hummel, J.C. Kennedy, R. N. Wright, J.M. Biersdorf, Special Purpose Nuclear Reactor (5 MW) for Reliable Power at Remote Sites Assessment Report, 2017.
  23. W. Zhang, D. Zhang, X. Liu, W. Tian, S. Qiu, G.H. Su, Thermal-hydraulic analysis of the thermoelectric space reactor power system with a potassium heat pipe radiator, Ann. Nucl. Energy 136 (2020), 107018.
  24. C. Mueller, P. Tsvetkov, A review of heat-pipe modeling and simulation approaches in nuclear systems design and analysis, Ann. Nucl. Energy 160 (2021), 108393.
  25. S.M.I. Saad, C.Y. Ching, D. Ewing, The transient response of wicked heat pipes with non-condensable gas, Appl. Therm. Eng. 37 (2012) 403-411.
  26. G.P. Peterson, An Introduction to Heat Pipes. Modeling, Testing, and Applications, 1994.
  27. Jun Zhuang, Hong Zhang, Heat Pipe Technology and its Engineering Applications [M], Chemical Industry Press, 2000 (in Chinese).
  28. Y. Cao, A. Faghri, Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input, Numer. Heat Tran., Part A: Applications 18 (1991) 483-502.
  29. Shujing Qin, Wenbang Ye, Complete Book of Chemical Equipment Design: Heat Exchangers [M], Chemical Industry Press, 2003 (in Chinese).
  30. S.U.-D. Khan, A.V. Nakhabov, Nuclear Reactor Technology Development and Utilization, Elsevier Science & Technology, 2020.
  31. Z.J. Zuo, A. Faghri, A network thermodynamic analysis of the heat pipe, Int. J. Heat Mass Tran. 41 (1998) 1473-1484.
  32. Shaoxuan Yin, Jian Yu, Dongjie Sheng, Wei Mao, Yudong Zhao, Research on dynamic characteristic analysis and power control method of heat pipe reactor, Process Autom. Instrum. 44 (2023) 130-138 (in Chinese).