• Title/Summary/Keyword: Two-Dimensional Channel

Search Result 642, Processing Time 0.026 seconds

An experimental investigaion of dispersion around cavity region in water channel (수로 장치내에서 공동영역 주변의 확산에 관한 실험적 연구)

  • 정상진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.295-302
    • /
    • 1993
  • The nature of the cavity region and dispersion around trianglular ridge was investigated using model. The artifical neutral boundary layer was simulated in water channel. Two dimensional trianglar ridges, having height of 1.2 cm and various width were placed normal to the flow. Mean velocity with many dimensionless parameters were measured and compared with wind tunnel results by other studies. Using vorticity generator and roughness, the neutral boundary layer was well represented by the water channel. concentration patterns resulting from dye source placed 0.2 cm height above were examined. Narrower the trianglar ridge width resulted in increased amplification factor and the larges amplification factor was observed near downward top of the ridge.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET 채널 전계의 특성해석)

  • Park, Min-Hyoung;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.363-367
    • /
    • 1988
  • A simple analytical model for the lateral channel electric field in gate - offset structured Lightly Doped Drain MOSFET has been developed. The model's results agree well with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field as function of drain and gate bias conditions and process, design parameters. Advantages of analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate / drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot - electron phenomena, individually. We are able to find the optimum doping concentration of LDD minimizing the peak electric field and hot - electron effects.

  • PDF

Forced Convection in a Flow Channel with Multiple Obstacles (다수의 장애물을 가진 유동채널에서의 강제 대류에 관한 연구)

  • Nam, Pyung-Woo;Cho, Sung-Hwan
    • Solar Energy
    • /
    • v.9 no.1
    • /
    • pp.62-69
    • /
    • 1989
  • This analysis is to investigate the influence of inflow angle when cooling air flows into PC (Printed Circuit) board channels. Flow between PC board channels with heat generating blocks is assumed laminar, incompressible, two-dimensional. Geometric parameters (block spacing (S), block height (H), block width (W) and channel height (L)) are held fixed. Inflow angle variations are $-10^{\circ},\;0^{\circ},\;10^{\circ}$, where uniform heat flux per unit axial length Q (W/m) from heated block surfaces is generated. The governing equations for velocity and temperature are solved by SIMPLE (Semi-Implicit Method Pressure for Linked Equation) algorithm. Nusselt number on each block surfaces is analyzed after a numerical calculation result. The result shows that the assumption on parallel inflow (inflow angle to channel, $0^{\circ}$) to PC board channels can be used without large error even when inflow' angle is varied.

  • PDF

Parametric Study of Instability in Obstructed Channel Flow (장애물이 부착된 평판 사이 유동의 불안정성에 관한 파라미터적 연구)

  • Hwang, In-Sang;Yang, Gyeong-Su;Kim, Do-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.546-553
    • /
    • 2001
  • A Parametric study is numerically carried out for flow fields in a two-dimensional plane channel with thin obstacles(“baffles and blocks”) mounted symmetrically in the vertical direction and periodically in the streamwise direction. The aim of this investigation is to understand how various geometric conditions influence the critical characteristics and pressure drop. A range of BR(the ratio of baffle interval to channel height) between 1 and 5 is considered. Especially when BR is equal to 3, for which the critical Reynolds number turned out to be minimal, we add blocks in the center region in order to study their destabilizing effects on the flows. It is revealed that the critical Reynolds number is further decreased by the presence of the block.

Development of electroosmotic flow control technique in micro fluidic devices (전기 삼투를 이용한 미세 유체 소자에서의 유량 제어 기술 개발)

  • Choi, Eun-Soo;Jeong, Dae-Joong;Sim, Won-Chul;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1991-1993
    • /
    • 2002
  • This paper presents the PDMS surface characteristic change after the plasma process and the electroosmotic flow control technique for the two-dimensional focusing in the micro channels made of PDMS and glass. The channels are fabricated by plastic molding and micromachining technique. To observe the surface characteristic change as time elapses, we measure the contact angle of water on the surface and the velocity of the electroosmotic flow in a channel. The electric field adequate for focusing of a core flow in a confluence channel is obtained by the experiment. The computer simulation is performed to obtain the width and the depth of the core flow for several junction angles of the confluence channel.

  • PDF

The Effect of Reciprocating Motion on Heat Transfer in the Roughened Rectangular Channel (거친사각채널에서 왕복운동이 열전달에 미치는 효과)

  • 안수환;손강필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.646-652
    • /
    • 2002
  • The influence of reciprocating frequency and radius on heat transfer in the roughened rectangular channel is experimentally investigated. The aspect ratio (width/height) of the duct is 2.33 and the rib height is one fifteenth of the duct height. And the ratio of rib-to-rib distance to rib height is 10. The discrete ribs were periodically attached to the button wall of the duct with a parallel orientation. The parametric test matrix involves Reynolds number, reciprocating, and reciprocating radius, in the ranges, 1,000∼6,000, 1.7∼2.5 HB and 7∼15cm, respectively. The combined effects of reciprocating frequency and reciprocating radius have considerable influence on the heat transfer due to the modified vortex flow structure.

Effect of Counter-doping Thickness on Double-gate MOSFET Characteristics

  • George, James T.;Joseph, Saji;Mathew, Vincent
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.130-133
    • /
    • 2010
  • This paper presents a study of the influence of variation of counter doping thickness on short channel effect in symmetric double-gate (DG) nano MOSFETs. Short channel effects are estimated from the computed values of current-voltage (I-V) characteristics. Two dimensional Quantum transport equations and Poisson equations are used to compute DG MOSFET characteristics. We found that the transconductance ($g_m$) and the drain conductance ($g_d$) increase with an increase in p-type counter-doping thickness ($T_c$). Very high value of transconductance ($g_m=38\;mS/{\mu}m$) is observed at 2.2 nm channel thickness. We have established that the threshold voltage of DG MOSFETs can be tuned by selecting the thickness of counter-doping in such device.

Flow Past Airfoil Moving Reciprocally in a Channel by Vortex Method

  • Ro Ki-Deok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1248-1255
    • /
    • 2006
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart law and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Cryogenic voltage sampling for arbitrary RF signals transmitted through a 2DEG channel

  • Kim, Min-Sik;Kim, Bum-kyu;Kim, U.J.;Choi, H.K.;Kim, Ju-Jin;Bae, Myung-Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.23-26
    • /
    • 2022
  • A lossless transport of an arbitrary waveform in a frequency range of 106-109 Hz through a conduction channel in a cryogenic temperature is of importance for a high-speed operation of quantum device. However, it is hard to use a commercial oscilloscope to directly detect the waveform travelling in a device located in a cryogenic system. Here, we developed a cryogenic voltage sampling technique by using a Schottky barrier gate prepared on a surface of a GaAs/AlGaAs device, which revealed that an incident rectangle waveform can transport through a 1 mm long two-dimensional conduction channel without waveform deformation up to 20 MHz, while further study is needed to increase the detection frequency.