• Title/Summary/Keyword: Two temperature model

Search Result 1,881, Processing Time 0.03 seconds

Real Time ECG Derived Respiratory Extraction from Heart Rate for Single Lead ECG Measurement using Conductive Textile Electrode (전도성 직물을 이용한 단일 리드 심전도 측정 및 실시간 심전도 유도 호흡 추출 방법에 관한 연구)

  • Yi, Kye-Hyoung;Park, Sung-Bin;Yoon, Hyoung-Ro
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.335-343
    • /
    • 2006
  • We have designed the system that measure one channel ECG by two electrode and extract real-time EDR with more related resipiration and comportable to subject by using conductive textile. On the assumption that relation between RL electrode and potential measurement electrode is coupled with RC connected model, we designed RL drive output to feedback two electrode for reduction of common mode signal. The conductive textile which was used for two ECG electrode was offered more comfort during night sleep in bed than any other method using attachments. In the method of single-lead EDR, R wave point or QRS interval area could be used for EDR estimation in traditional method, it is, so to speak, the amplitude modulation(AM) method for EDR. Alternatively, R-R interval could be used for frequency modulation(FM) method based on Respiratory Sinus Arrhythmia(RSA). For evaluation of performance on AM EDR and FM EDR from 14 subject, ECG lead III was measured. Each EDR was compared with both temperature around nose(direct measurement of respiration) and respiration signal from thoracic belt(indirect measurement of respiration) on mean squared error(MSE), cross correlation(Xcorr), and Coherence. The upsampling interpolation technique of multirate signal processing is applied to interpolating data instead of cubic spline interpolation. As a result, we showed the real-time EDR extraction processing to be implemented at micro-controller.

Evaluation of Vertical Ozone Profiles from Ozonesonde over Pohang, Korea against coinciding HALOE datasets

  • Hwang, Seung-Hyun;Sohn, Byung-Ju
    • Journal of the Korean earth science society
    • /
    • v.27 no.7
    • /
    • pp.778-786
    • /
    • 2006
  • In Korea, the ozone profiles have been acquired by using ozonesonde at Pohang station of the Korea Meteorological Administration (KMA) since 1995. These ozone soundings were performed at 0500 UTC on a weekly basis (every Wednesday) in a clear sky. The ozonesonde is equipped with the model 5A ECC sensor, which is one of the most common ozonesonde systems. There have been no attempts to evaluate the Pohang ozonesonde profiles compared with satellite. This paper will provide the first evaluation results for the ozonesonde profiles against HALogen Occultation Experiment (HALOE) measurements over Korea. During 1995-2004 periods, a total of 450 and 188 ozone profiles were obtained from the ozonesonde measurements from HALOE measurements over Korea, respectively. Hence, a total of 34 coincident profile pairs are extracted. Among those total profiles, 26 profiles from ozonesonde are compared against nearly coincident HALOE measurements in time and space. For ozone profiles, the results of statistical analyses showed that the best agreement between two measurements occurs in the 20-25 km and 30-35 km region, where the mean and RMS percent differences are less than ${\pm}5$ and 14%, respectively. For temperature profiles, the mean and RMS percent differences in 20-25 km region are estimated to be about -0.1 and 1.7%, respectively. According to the scatter plots between two measurements, ozone data are strongly correlated each other above 20 km altitude range with more than 0.8 correlation coefficients. It is found that the altitude (pressure level) differences between two measurements would mainly lead to the discrepancy (over 40% below 18 km) below 20 km in ozone profiles.

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Performance Analysis of a $CO_2$ Two-Stage Twin Rotary Compressor ($CO_2$ 2단 트윈 로타리 압축기 성능해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2007
  • Analytical investigation on the performance of a two stage twin rotary compressor for $CO_2$ heat pump water heater system has been carried out. A computer simulation program was made based on analytical models for gas compression in control volumes, leakages among neighboring volumes, and dynamics of moving elements of the compressor. Calculated cooling capacity, compressor input, and COP were well compared to those of experiments over the compressor speeds tested. For the operating condition of suction pressure of 3 MPa, and discharge pressure of 9 MPa, and compressor inlet temperature of $35^{\circ}C$, the compressor efficiency was calculated to be 80.2%: volumetric, adiabatic, and mechanical efficiencies were 88.3%, 93.2%, and 92.7%, respectively. For the present compressor model, volumetric and adiabatic efficiencies of the second stage cylinder were lower by about $6{\sim}7%$ than those of the first stage mainly due to the smaller discharge port at the second stage. Parametric study on the discharge port size showed that the compressor performance could be improved by 3.5% just by increasing the discharge port diameter by 20%.

A Neural Network for Long-Term Forecast of Regional Precipitation (지역별 중장기 강수량 예측을 위한 신경망 기법)

  • Kim, Ho-Joon;Paek, Hee-Jeong;Kwon, Won-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • In this paper, a neural network approach to forecast Korean regional precipitation is presented. We first analyze the characteristics of the conventional models for time series prediction, and then propose a new model and its learning method for the precipitation forecast. The proposed model is a layered network in which the outputs of a layer are buffered within a given period time and then fed fully connected to the upper layer. This study adopted the dual connections between two layers for the model. The network behavior and learning algorithm for the model are also described. The dual connection structure plays the role of the bias of the ordinary Multi-Layer Perceptron(MLP), and reflects the relationships among the features effectively. From these advantageous features, the model provides the learning efficiency in comparison with the FIR network, which is the most popular model for time series prediction. We have applied the model to the monthly and seasonal forecast of precipitation. The precipitation data and SST(Sea Surface Temperature) data for several decades are used as the learning pattern for the neural network predictor. The experimental results have shown the validity of the proposed model.

  • PDF

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Performance of CMIP5 Models for the Relationship between Variabilities of the North Pacific Storm Track and East Asian Winter Monsoon (북태평양 스톰트랙 활동과 동아시아 겨울 몬순의 상관성에 관한 CMIP5 모델의 모의 성능)

  • Yoon, Jae-Seung;Chung, Il-Ung;Shin, Sang-Hye
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.295-308
    • /
    • 2015
  • Based on the CMIP5 historical simulation datasets, we assessed the performance of state-of-the-art climate models in respect to the relationship between interannual variabilities of the North Pacific synoptic eddy (NPSE) and East Asian winter monsoon (EAWM). Observation (ERA-Interim) shows a high negative correlation (-0.73) between the interannual variabilities of East Asian winter monsoon (EAWM) intensity and North Pacific synoptic eddy (NPSE) activity during the period of 1979~2005. Namely, a stronger (weaker) EAWM is related to a weaker (stronger) synoptic eddy activities over the North Pacific. This strong reverse relationship can be well explained by latitudinal distributions of the surface temperature anomalies over East Asian continent, which leads the variation of local baroclinicity and significantly weakens the baroclinic wave activities over the northern latitudes of $40^{\circ}N$. This feature is supported by the distribution of the meridional heat flux (${\overline{{\nu}^{\prime}{\theta}^{\prime}}}$) anomalies, which have negative (positive) values along the latitudes $40{\sim}50^{\circ}N$ for strong(weak) EAWM years. In this study, the historical simulations by 11 CMIP5 climate models (BCC-CSM1.1, CanESM2, GFDL-ESM2G, GFDL-ESM2M, HadGEM2-AO, HadGEM2-CC, IPSL-CM5A-LR, MPI-ESM-LR, MPI-ESM-MR, MRI-CGCM3, and NorESM1-M) are analyzed for DJF of 1979~2005. Correlation coefficient between the two phenomena is -0.59, which is comparable to that of observation. Model-to-model variation in this relationship is relatively large as the range of correlation coefficient is between -0.76 (HadGEM2-CC and HadGEM2-AO) and -0.33 (MRI-CGCM3). But, these reverse relationships are shown in all models without any exception. We found that the multi-model ensemble is qualitatively similar to the observation in reasoning (that is, latitudinal distribution of surface temperature anomalies, variation of local baroclinicity and meridional heat flux by synoptic eddies) of the reverse relationship. However, the uncertainty for weak EAWM is much larger than strong EAWM. In conclusion, we suggest that CMIP5 models as an ensemble have a good performance in the simulation of EAWM, NPSE, and their relationship.

A Study of GIS Prediction Model of Domestic Fruit Cultivation Location Changes by the Global Warming -Six Tropical and Sub-tropical Fruits- (지구온난화에 따른 국내 과수작물 재배지 변화에 대한 GIS 예측 모형 연구 -여섯 가지 열대 및 아열대 과수를 중심으로-)

  • Kwak, Tae-Sik;Ki, Jung-Hoon;Kim, Young-Eun;Jeon, Hae-Min;Kim, Shi-Jin
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.93-106
    • /
    • 2008
  • For agriculture is very highly dependent on climate and weather condistions, global warming seems to have a great impact on it, including its productivity, cultivation condition, product quality, and optimum cultivation location. In this study, we adopted geographical information system (GIS) in order to investigate the changes of Korea's cultivation area which are caused by global warming, especially with the examples of such tropical and sub-tropical fruits as lemon, fig, kiwi, orange, pomegranate, and mandarin. In terms of GIS techniques, we utilized the interpolate function for temperature changes, surface analysis function for slope, and raster calculator. Currently, these fruits's cultivation areas are in Jeju island and southern part of Korea. But these areas will be expanded according as our GIS model assumes $3^{\circ}C$ and $4.5^{\circ}$ increases of average and lowest temperature by the global warming in Korea. Optimum cultivation areas of these six fruits have two patterns; one is expansion and the other is belt shape shift. From the results of the study, we call for an urgent need of Korea government's policy and farmers' reasonable responses about global warming, which will be able to give more opportunities and better foods to Korea society in general.

  • PDF

Adsorption Characteristics and Thermodynamic Parameters of Acid Fuchsin on Granular Activated Carbon (입상 활성탄에 대한 Acid Fuchsin의 흡착특성과 열역학 파라미터)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2021
  • The adsorption of Acid Fuchsin (AF) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetics and thermodynamic parameters by experimenting with the initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH effect experiment, the adsorption of AF on activated carbon showed a bathtub type with increased adsorption at pH 3 and 11. The adsorption equilibrium data of AF fit well with the Freundlich isotherm model, and the calculated separation factor (1/n) value was found in which activated carbon can effectively remove AF. The pseudo-second-order kinetic model fits well within 7.88% of the error percent in the adsorption process. According to Weber and Morris's model plot, it was divided into two straight lines. The intraparticle diffusion rate was slow because the stage 2 (intraparticle diffusion) slope was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was a rate-controlling step. The activation energy of AF (13.00 kJ mol-1) corresponded to the physical adsorption process (5 - 40 kJ mol-1). The free energy change of the AF adsorption by activated carbon showed negative values at 298-318 K. As the spontaneity increased with increasing temperature. The adsorption of AF was an endothermic reaction (ΔH = 22.65 kJ mol-1).

Predicting Habitat Suitability of Carnivorous Alert Alien Freshwater Fish (포식성 유입주의 어류에 대한 서식처 적합도 평가)

  • Taeyong, Shim;Zhonghyun, Kim;Jinho, Jung
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • Alien species are known to threaten regional biodiversity globally, which has increased global interest regarding introduction of alien species. The Ministry of Environment of Korea designated species that have not yet been introduced into the country with potential threat as alert alien species to prevent damage to the ecosystem. In this study, potential habitats of Esox lucius and Maccullochella peelii, which are predatory and designated as alert alien fish, were predicted on a national basis. Habitat suitability was evaluated using EHSM (Ecological Habitat Suitability Model), and water temperature data were input to calculate Physiological Habitat Suitability (PHS). The prediction results have shown that PHS of the two fishes were mainly controlled by heat or cold stress, which resulted in biased habitat distribution. E. lucius was predicted to prefer the basins at high latitudes (Han and Geum River), while M. peelii preferred metropolitan areas. Through these differences, it was expected that the invasion pattern of each alien fish can be different due to thermal preference. Further studies are required to enhance the model's predictive power, and future predictions under climate change scenarios are required to aid establishing sustainable management plans.