• Title/Summary/Keyword: Two Robot Arms

Search Result 83, Processing Time 0.027 seconds

A Small Humanoid Robot that can Play Golf (소형 인간형 로봇의 골프하기)

  • Kim, Jong-Woo;Cha, Chul;Cho, Dong-Kwon;Sung, Young-Whee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.374-382
    • /
    • 2007
  • Robot mobility and intelligence become more important for robots to be used in various fields other than automation. The main purpose of providing mobility to a robot is to extend the robot's manipulability. In this paper, we introduce a small humanoid robot that can autonomously play golf as an example of incorporating robot intelligence, mobility, and manipulability. The robot has 12 degrees of freedom for legs and has various basic walking patterns. It can move to a desired position and change orientation by combining the basic waking patterns. The robot has a color CCD camera and can extract coordinates of the objects in the environments. The small humanoid robot has 8 degrees of freedom for arms and can play golf autonomously with two kinds of dexterous swing motions. Kinematic analysis of the robot arms, vision data processing for the recognition of the environments, algorithm for playing robotic golf have been performed or proposed. The experimental results show that the robot can play golf autonomously.

Design of Embedded EPGA for Controlling Humanoid Robot Arms Using Exoskeleton Motion Capture System (Exoskeleton 모션 캡처 장치로 다관절 로봇의 원격제어를 하기 위한 FPGA 임베디드 제어기 설계)

  • Lee, Woon-Kyu;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • In this paper, hardware implementation of interface and control between two robots, the master and the slave robot, are designed. The master robot is the motion capturing device that captures motions of the human operator who wears it. The slave robot is the corresponding humanoid robot arms. Captured motions from the master robot are transferred to the slave robot to follow after the master. All hardware designs such as PID controllers, communications between the master robot, encoder counters, and PWM generators are embedded on a single FPGA chip. Experimental studies are conducted to demonstrate the performance of the FPGA controller design.

Neural Network Control of a Two Wheeled Mobile Inverted Pendulum System with Two Arms (두 팔 달린 두 바퀴 형태의 모바일 역진자 시스템의 신경회로망 제어)

  • Noh, Jin-Seok;Kim, Hyun-Wook;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.652-658
    • /
    • 2010
  • This paper presents the implementation and control of a two wheeled mobile robot(TWMR) based on a balancing mechanism. The TWMR is a mobile inverted pendulum structure that combines an inverted pendulum system and a mobile robot system with two arms instead of a rod. To improve robustness due to disturbances, the radial basis function (RBF) network is used to control an angle and a position at the same time. The reference compensation technique(RCT) is used as a neural control method. Experimental studies are conducted to demonstrate performance of neural network controllers. The robot are implemented with the remote control capability.

Development of 3-dimensional measuring robot cell (3차원 측정 로보트 셀 개발)

  • Park, Kang;Cho, Koung-Rae;Shin, Hyun-Oh;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1139-1143
    • /
    • 1991
  • Using industrial robots and sensors, we developed an inline car body inspection system which proposes high flexibility and sufficient accuracy. Car Body Inspection(CBI) cell consists of two industrial robots, two corresponding carriages, camera vision system, a process computer with multi-tasking ability and several LDS's. As industrial robots guarantee sufficient repeatabilities, the CBI cell adopts the concept of relative measurement instead of that of absolute measurement. By comparing the actual measured data with reference data, the dimensional errors of the corresponding points can be calculated. The length of the robot arms changes according to ambient temperature and it affects the measuring accuracy. To compensate this error, a robot arm calibration process was realized. By measuring a reference jig, the differential changes of the robot arms due to temperature fluctuation can be calculated and compensated.

  • PDF

Design and implement of the Educational Humanoid Robot D2 for Emotional Interaction System (감성 상호작용을 갖는 교육용 휴머노이드 로봇 D2 개발)

  • Kim, Do-Woo;Chung, Ki-Chull;Park, Won-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1777-1778
    • /
    • 2007
  • In this paper, We design and implement a humanoid robot, With Educational purpose, which can collaborate and communicate with human. We present an affective human-robot communication system for a humanoid robot, D2, which we designed to communicate with a human through dialogue. D2 communicates with humans by understanding and expressing emotion using facial expressions, voice, gestures and posture. Interaction between a human and a robot is made possible through our affective communication framework. The framework enables a robot to catch the emotional status of the user and to respond appropriately. As a result, the robot can engage in a natural dialogue with a human. According to the aim to be interacted with a human for voice, gestures and posture, the developed Educational humanoid robot consists of upper body, two arms, wheeled mobile platform and control hardware including vision and speech capability and various control boards such as motion control boards, signal processing board proceeding several types of sensors. Using the Educational humanoid robot D2, we have presented the successful demonstrations which consist of manipulation task with two arms, tracking objects using the vision system, and communication with human by the emotional interface, the synthesized speeches, and the recognition of speech commands.

  • PDF

Exerted force minimization for weak points in cooperating multiple robot arms

  • Shin, Young-Dal;Chung, Myung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1167-1172
    • /
    • 1990
  • This paper discusses a force distribution scheme which minimizes the weighted norm of the forces/torques applied on weak points of cooperating multiple robot arms. The scheme is proposed to avoid the damage or unwanted motion of any weak point of robots or object stemming from excessive forces/torques. Since the proposed scheme can be used for either the joint torque minimization or the exerted force minimization on the object, it can be regarded as a unified force minimization method for multiple robot arms. The computational complexity in this scheme is analyzed using the properties of Jarcobian. Simulation of two identical PUMA robots held an object is carried out to illustrate the proposed scheme. By the proper choice of the weighting matrix in the performance index, we show that force minimization for a weak point can be achieved, and that the exerted force minimization on the object can be changed to the joint torque minimization.

  • PDF

Control Methodology of Multiple Arms for IMS : Experimental Sawing Task by Nonidentical Cooperating Arms (IMS를 위한 로봇 군 제어방법 : 이종 협조 로봇의 톱질 작업)

  • Yeo, Hee-Joo;Suh, Il-Hong;Lee, Byung-Ju;Oh, Sang-Rok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.452-460
    • /
    • 1999
  • Sawing experiments using a two-arm system have been performed in this work. The two-arm system under consideration of two kinematically-nonidentical arms. A passive joint is inserted at the end-point of one robot in order to increase the mobility up to the motion degree required for sawing tasks. A hybrid control algorithm for control of the two-arm system is designed. We experimentally show that the performance of the velocity and force response are satisfactory, and that one additional passive joint not only prevents the system from unwanted yaw motion in the sawing task, but also allows an unwanted pitch motion to be notably reduced by an internal load control. To show the general applicability of the proposed algorithms, we perform experimentation under several different conditions for saw, such as three saw blades, two sawing speeds, and two vertical forces.

  • PDF

5 DOF Home Robot Arm based on Counterbalance Mechanism (기계식 중력보상 기반의 가정용 5자유도 로봇 팔)

  • Park, Hui Chang;Ahn, Kuk Hyun;Min, Jae Kyung;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.48-54
    • /
    • 2020
  • Home robot arms require a payload of 2 kg to perform various household tasks; at the same time, they should be operated by low-capacity motors and low-cost speed reducers to ensure reasonable product cost. Furthermore, as robot arms on mobile platforms are battery-driven, their energy efficiency should be very high. To satisfy these requirements, we designed a lightweight counterbalance mechanism (CBM) based on a spring and a wire and developed a home robot arm with five degrees of freedom (DOF) based on this CBM. The CBM compensates for gravitational torques applied to the two pitch joints that are most affected by the robot's weight. The developed counterbalance robot adopts a belt-pulley based parallelogram mechanism for 2-DOF gravity compensation. Experiments using this robot demonstrate that the CBM allows the robot to meet the above-mentioned requirements, even with low-capacity motors and speed reducers.

Kinematics Analysis and Implementation of a Motion-Following Task for a Humanoid Slave Robot Controlled by an Exoskeleton Master Robot

  • Song, Deok-Hui;Lee, Woon-Kyu;Jung, Seul
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.681-690
    • /
    • 2007
  • This article presents the kinematic analysis and implementation of an interface and control of two robots-an exoskeleton master robot and a human-like slave robot with two arms. Two robots are designed and built to be used for motion-following tasks. The operator wears the exoskeleton master robot to generate motions, and the slave robot is required to follow after the motion of the master robot. To synchronize the motions of two robots, kinematic analysis is performed to correct the kinematic mismatch between two robots. Hardware implementation of interface and control is done to test motion-following tasks. Experiments are performed to confirm the feasibility of the motion-following tasks by two robots.

A Study on Implementation of Service Robot Platform for Mess-Cleanup (정리정돈용 서비스 로봇 플랫폼의 구현 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 4 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.