• Title/Summary/Keyword: Two Point Boundary Problem

Search Result 131, Processing Time 0.026 seconds

CRITICAL POINT THEORY AND AN ASYMMETRIC BEAM EQUATION WITH TWO JUMPING NONLINEAR TERMS

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.3
    • /
    • pp.299-314
    • /
    • 2009
  • We investigate the multiple nontrivial solutions of the asymmetric beam equation $u_{tt}+u_{xxxx}=b_1[{(u + 2)}^+-2]+b_2[{(u + 3)}^+-3]$ with Dirichlet boundary condition and periodic condition on t. We reduce this problem into a two-dimensional problem by using variational reduction method and apply the Mountain Pass theorem to find the nontrivial solutions of the equation.

  • PDF

CUBIC SPLINE METHOD FOR SOLVING TWO-POINT BOUNDARY-VALUE PROBLEMS

  • Al Said, Eisa-A.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.3
    • /
    • pp.759-770
    • /
    • 1998
  • In this paper we use uniform cubic spline polynomials to derive some new consistency relations. These relations are then used to develop a numerical method for computing smooth approxi-mations to the solution and its first second as well as third derivatives for a second order boundary value problem. The proesent method out-performs other collocations finite-difference and splines methods of the same order. numerical illustratiosn are provided to demonstrate the practical use of our method.

THOMAS ALGORITHMS FOR SYSTEMS OF FOURTH-ORDER FINITE DIFFERENCE METHODS

  • Bak, Soyoon;Kim, Philsu;Park, Sangbeom
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.891-909
    • /
    • 2022
  • The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.

Optimal Guidance of Guided Projectile for Range Maximization with Boundary Condition on Fin Deployment Timing (조종날개 전개시점 경계조건을 포함한 지능화 탄약의 사거리 최대화 유도 기법)

  • Kim, Yongjae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.129-139
    • /
    • 2019
  • In order for a gun-launched guided projectile to glide to the maximum range, when to deploy the fin and start flight with guidance and control should be considered in range optimization process. This study suggests a solution to the optimal guidance problem for flight range maximization of the flight model of a guided projectile in vertical plane considering the aerodynamic properties. After converting the nonlinear Multi-Phase Optimal Control Problem to Two-Point Boundary Value Problem, the optimized guidance command and the best fin deployment timing are calculated by the proposed numerical method. The optimization results of the multiple flight rounds with various initial velocity and launch angle indicate that determining specific launch condition incorporated with the guidance scheme is of importance in terms of mechanical energy consumption.

The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method (Davidenko법에 의한 시간최적 제어문제의 수치해석해)

  • Yoon, Joong-sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

Effect of Boundary Condition Changes on the Sound Field (경계 조건이 음장에 미치는 영향)

  • 조성호;김양한;최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1317-1322
    • /
    • 2001
  • What changes in the eigen values and eigen functions are produced if the boundary surface S is no longer rigid but has a specific acoustic admittance which may vary from point to point on S. In this paper, changes in eigen values and eigen functions are derived by using Kirchhoff-Helmholtz integral equation. And acoustic potential energy, which is representative measure describing the physical quantity in cavity, is defined. Acoustic potential energy can be divided into primary one and secondary one. Primary one is the acoustic potential energy through unchanged eigen functions, and secondary one is through changed eigen functions. Using these two term, we can find the eigenvalue problem, which gives the control performance when the boundary condition is changed.

  • PDF

Differential Game Approach to Competitive Advertising Model

  • Park, Sung-Joo;Lee, Keon-Chang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.95-105
    • /
    • 1986
  • This paper presents an adaptive algorithm to generate a near-optimal closed-loop solution for a non-zero sum differential game by periodically updating the solutions of the two-point boundary-value problem. Applications to competitive advertising problem show that the adaptive algorithm can be used as an efficient tool to solve the differential game problem in which one player may take advantage of the other's non-optimal play.

  • PDF

Hydrodynamic Stability Analysis of KEB Boundary-Layer Flow (KEB 경계층 유동의 유동특성 해석)

  • Lee Yun-Yong;Lee Kwang-Won;Hwang Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.683-686
    • /
    • 2002
  • The hydrodynamic instability of the three-dimensional boundary-layer over a rotating disk has been numerically investigated for three cases flows using linear stability theory (i.e. Rossby number, Ro = -1, 0, and 1). Detailed numerical values of the disturbance wave number, wave frequency, azimuth angle, radius (Reynolds number, Re) and other characteristics have been calculated for $K{\acute{a}}rm{\acute{a}}n$, Ekman and $B{\"{o}}ewadt$ boundary-layer flows. Neutral curves for these flows are presented. Presented are the neutral stability results concerning the two instability modes (Type I and Type II) by using a two-point boundary value problem code COLUEW that was based upon the adaptive orthogonal collocation method using B-spline. The prediction from the present results on both instability modes among the three cases agrees with the previously known numerical and experimental data well.

  • PDF

Analysis of 2-D Potential Problem with L-shape Domain by p-Convergent Boundary Element Method (p-수렴 경계요소법에 의한 L-형 영역을 갖는 2차원 포텐셜 문제 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • The p-convergent boundary element method has been proposed to analyze two-dimensional potential problem on the basis of high order Legendre shape functions that have different property comparing with the shape functions in conventional boundary element method. The location of nodes corresponding to high order shape function are not defined along the boundary, called by nodeless node, similar to the p-convergent finite element method. As the order of shape function increases, the collocation point method is used to solve linear simultaneous equations. The collocation patterns of p-convergent boundary element method consist of non-symmetric hierarchial or symmetric non-hierarchical. As the order of shape function increases, the number of collocation point increases. The singular integral that appears in p-convergent boundary element has been calculated by special numeric quadrature technique and semi-analytical integration technique. The L-shape domain problem including singularity in the vicinity of reentrant comer is analyzed and the numerical results show that the relative error is smaller than $10^{-2}%$ range as compared with other results in literatures. In case of same condition, the symmetric p-collocation point pattern shows high accuracy of solution.

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF