• 제목/요약/키워드: Two Dimensional Surface Model

검색결과 609건 처리시간 0.025초

진동수주형 파력발전구조물의 최적형상에 대한 검토 (Discussion on Optimal Shape for Wave Power Converter Using Oscillating Water Column)

  • 이광호;박정현;백동진;조성;김도삼
    • 한국해안·해양공학회논문집
    • /
    • 제23권5호
    • /
    • pp.345-357
    • /
    • 2011
  • 최근 지구환경문제와 에너지원의 다각화를 위한 일환으로 파랑에너지를 이용하는 신재생에너지의 기술개발이 유럽과 일본 등을 중심으로 활발히 추진 및 실용화되고 있다. 특히, 케이슨 내의 공기실에서 파랑에 의한 수면의 상하운동으로 유도되는 공기흐름을 이용하는 진동수주형 파력발전시스템은 가장 효율적인 파랑에너지흡수장치로 알려져 있고, 따라서 상업화에 가장 근접한 파력발전장치 중에 하나이다. 본 연구에서는 진동수주형 파력발전구조물에서 터빈(Wells터빈)에 직접 작용하는 공기흐름속도를 2차원 및 3차원수치실험으로부터 검토하며, 이 때 형상의 변화에 따른 공기의 최대흐름속도를 추정하여 진동수주형 파력발전구조물의 최적형상을 논의한다. 수치해석에서는 기체와 액체의 혼상동적현상을 동일한 지배방정식으로 해석하는 혼상류(2상류)수치모델에 기초한 3차원수치파동수로를 적용하였다. 이로부터 입사주기대에 따라 최적형상의 크기가 상이하게 나타나는 것을 확인할 수 있었고, 최소의 반사율이 발생하는 주기 대에서 공기흐름이 최대로 된다는 것을 알 수 있었다.

팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구 (A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE)

  • 이동원;강남철;김근영;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

Interactive prostate shape reconstruction from 3D TRUS images

  • Furuhata, Tomotake;Song, Inho;Zhang, Hong;Rabin, Yoed;Shimada, Kenji
    • Journal of Computational Design and Engineering
    • /
    • 제1권4호
    • /
    • pp.272-288
    • /
    • 2014
  • This paper presents a two-step, semi-automated method for reconstructing a three-dimensional (3D) shape of the prostate from a 3D transrectal ultrasound (TRUS) image. While the method has been developed for prostate ultrasound imaging, it can potentially be applicable to any other organ of the body and other imaging modalities. The proposed method takes as input a 3D TRUS image and generates a watertight 3D surface model of the prostate. In the first step, the system lets the user visualize and navigate through the input volumetric image by displaying cross sectional views oriented in arbitrary directions. The user then draws partial/full contours on selected cross sectional views. In the second step, the method automatically generates a watertight 3D surface of the prostate by fitting a deformable spherical template to the set of user-specified contours. Since the method allows the user to select the best cross-sectional directions and draw only clearly recognizable partial or full contours, the user can avoid time-consuming and inaccurate guesswork on where prostate contours are located. By avoiding the usage of noisy, incomprehensible portions of the TRUS image, the proposed method yields more accurate prostate shapes than conventional methods that demand complete cross-sectional contours selected manually, or automatically using an image processing tool. Our experiments confirmed that a 3D watertight surface of the prostate can be generated within five minutes even from a volumetric image with a high level of speckles and shadow noises.

Viaduct seismic response under spatial variable ground motion considering site conditions

  • Derbal, Rachid;Benmansour, Nassima;Djafour, Mustapha;Matallah, Mohammed;Ivorra, Salvador
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.557-566
    • /
    • 2019
  • The evaluation of the seismic hazard for a given site is to estimate the seismic ground motion at the surface. This is the result of the combination of the action of the seismic source, which generates seismic waves, the propagation of these waves between the source and the site, and site local conditions. The aim of this work is to evaluate the sensitivity of dynamic response of extended structures to spatial variable ground motions (SVGM). All factors of spatial variability of ground motion are considered, especially local site effect. In this paper, a method is presented to simulate spatially varying earthquake ground motions. The scheme for generating spatially varying ground motions is established for spatial locations on the ground surface with varying site conditions. In this proposed method, two steps are necessary. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function. An empirical coherency loss model is used to define spatial variable seismic ground motions at the base rock. In the second step, power spectral density function of ground motion on surface is derived by considering site amplification effect based on the one dimensional seismic wave propagation theory. Several dynamics analysis of a curved viaduct to various cases of spatially varying seismic ground motions are performed. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effect, to spatial ground motions with considering coherency loss, phase delay and local site effects are also calculated. The results showed that the generated seismic signals are strongly conditioned by the local site effect. In the same sense, the dynamic response of the viaduct is very sensitive of the variation of local geological conditions of the site. The effect of neglecting local site effect in dynamic analysis gives rise to a significant underestimation of the seismic demand of the structure.

탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석 (Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation)

  • 서동찬;김경희;이도훈;이보라;서준호
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G (Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G)

  • 박정욱;박찬희;장리;윤정석;손장윤;이창수
    • 터널과지하공간
    • /
    • 제33권3호
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의 (3D numerical modeling of impact wave induced by landslide using a multiphase flow model)

  • 김병주;백중철
    • 한국수자원학회논문집
    • /
    • 제54권11호
    • /
    • pp.943-953
    • /
    • 2021
  • 호수, 저수지, 만 등의 사면에서 발생하는 산사태 및 토석류에 의해 유발되는 수면충격파의 전파는 복잡한 지형 조건에서 토석류와 물 흐름이 상호작용하는 3차원 자연현상이다. 이 연구에서는 3차원 다상 난류 흐름 해석을 위한 수치모형과 비뉴튼 유체인 토석류에 대한 유변학적 모형을 적용하여 만의 사면에서 발생한 산사태로 인한 수면충격파의 거동을 수치모의하였다. 수치해석 결과를 타 연구자의 수리실험 자료와 비교 분석하여 3차원 수치모형의 적용성을 평가하였다. 수면으로 유입되는 토석류의 선단부 두께와 유속이 적절히 모의 된다면, 수면충격파의 정점부가 솟구치는 높이와 수면형은 매우 우수한 정확도로 예측이 가능한 것으로 나타났다. 토석류의 초기 형상을 다르게 설정한 두 가지 수치해석 결과는 연직상향으로 솟구친 수면충격파가 최고점에 도달한 후 중력에 의해 하강하면서 감쇄되는 단계에서부터 상이해지는 것으로 나타났다. 토석류 초기 두께를 상대적으로 크게 설정한 수치모의 결과는 만을 가로지르는 수면형과 함께 반대편 사면에서의 쳐오름 현상까지 양호하게 실험자료를 재현할 수 있는 것으로 나타났다. 반대편 사면에 도달한 수면충격파가 사면을 거슬러 흐르는 최고 쳐오름 높이는 토석류 총량이 같은 경우 수면으로 유입되는 토석류의 초기 두께에 민감하지 않은 것으로 나타났다. 한편, 수로 바닥을 따라 전파되는 토석류의 전파 특성을 더 정확하게 재현하기 위해서는 실험에서 점토 성분이 없는 입자만을 이용하여 재현한 토석류 물질 특성에 맞는 유변학적 모형을 적용할 필요가 있다고 판단된다.

싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향 (Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation)

  • 이현호;백종진
    • 대기
    • /
    • 제26권3호
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.

고온 연소가스에 노출되는 디퓨저의 복합 열전달량 계산 (Analysis of Conjugated Heat Transfer for the Diffuser Exposed to Hot Combustion Gas)

  • 진상욱;나재정;이상호;이규준;임진식;김성돈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.231-234
    • /
    • 2010
  • 고온의 연소가스에 노출되는 디퓨저 냉각에 필요한 열량을 계산하였다. 디퓨저 내부는 공기와 혼합된 연소가스가 흐르고 디퓨저 벽체는 채널로 구성된 공간에 물이 흐르도록 되어 있다. 디퓨저 구조물과 유체 간에 또는 유체 자체적인 열전달과 구조물 내부의 열전달 현상은 복합적인 형태로 나타나는데 고온에서 작동하는 점을 고려하여 복사, 대류, 전도 모두를 적용 하였다. 열전달량 계산은 경험식에 근거한 1차원 해석과 CFD 해석의 2가지 방법으로 수행하였다. 1차원 해석은 경험식을 통해 얻어진 결과를 적용하여 열전달량을 산출하였고, CFD 해석은 DO 복사 열전달 모델을 적용하여 계산하였으며, 계산의 타당성을 검정하기 위하여 두 방법을 비교하였다. 총 열전달량의 차이는 1% 미만으로 거의 같았으나, 1차원 계산은 열전달 모델의 단순화로 디퓨저 입구에서의 순환영역을 구현하지 못하여 전체적인 열전달량 분포에서는 차이를 보였다. 디퓨저의 안정성을 확보하기 위한 냉각수 용량은 2가지 계산 결과를 조합하여 각 구간별로 최대 열전달량을 근거로 도출하였다.

  • PDF