DOI QR코드

DOI QR Code

3D numerical modeling of impact wave induced by landslide using a multiphase flow model

다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의

  • Kim, Byungjoo (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Paik, Joongcheol (Department of Civil Engineering, Gangneung-Wonju National University)
  • 김병주 (강릉원주대학교 토목공학과) ;
  • 백중철 (강릉원주대학교 토목공학과)
  • Received : 2021.10.12
  • Accepted : 2021.10.27
  • Published : 2021.11.30

Abstract

The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

호수, 저수지, 만 등의 사면에서 발생하는 산사태 및 토석류에 의해 유발되는 수면충격파의 전파는 복잡한 지형 조건에서 토석류와 물 흐름이 상호작용하는 3차원 자연현상이다. 이 연구에서는 3차원 다상 난류 흐름 해석을 위한 수치모형과 비뉴튼 유체인 토석류에 대한 유변학적 모형을 적용하여 만의 사면에서 발생한 산사태로 인한 수면충격파의 거동을 수치모의하였다. 수치해석 결과를 타 연구자의 수리실험 자료와 비교 분석하여 3차원 수치모형의 적용성을 평가하였다. 수면으로 유입되는 토석류의 선단부 두께와 유속이 적절히 모의 된다면, 수면충격파의 정점부가 솟구치는 높이와 수면형은 매우 우수한 정확도로 예측이 가능한 것으로 나타났다. 토석류의 초기 형상을 다르게 설정한 두 가지 수치해석 결과는 연직상향으로 솟구친 수면충격파가 최고점에 도달한 후 중력에 의해 하강하면서 감쇄되는 단계에서부터 상이해지는 것으로 나타났다. 토석류 초기 두께를 상대적으로 크게 설정한 수치모의 결과는 만을 가로지르는 수면형과 함께 반대편 사면에서의 쳐오름 현상까지 양호하게 실험자료를 재현할 수 있는 것으로 나타났다. 반대편 사면에 도달한 수면충격파가 사면을 거슬러 흐르는 최고 쳐오름 높이는 토석류 총량이 같은 경우 수면으로 유입되는 토석류의 초기 두께에 민감하지 않은 것으로 나타났다. 한편, 수로 바닥을 따라 전파되는 토석류의 전파 특성을 더 정확하게 재현하기 위해서는 실험에서 점토 성분이 없는 입자만을 이용하여 재현한 토석류 물질 특성에 맞는 유변학적 모형을 적용할 필요가 있다고 판단된다.

Keywords

Acknowledgement

This research was supported by a grant (21RITD-C158631-02) from Regional Innovation Technology Development Program Funded by Ministry of Land, Infrastructure and Transport of Korean government.

References

  1. Abadie, S., Morichon, D., Grilli, S., and Glockner, S. (2010). "Numerical simulation of waves generated by landslides using a multiple fluid Navier-Stokes model." Coastal Engineering, Vol. 57, pp. 779-794. https://doi.org/10.1016/j.coastaleng.2010.03.003
  2. Akgun, A. (2011). "Assessment of possible damaged areas due to landslide-induced waves at a constructed reservoir using empirical approaches: Kurtun (North Turkey) Dam reservoir area." Natural Hazards and Earth System Sciences, Vol. 11, pp. 1341-1350. https://doi.org/10.5194/nhess-11-1341-2011
  3. Ataie-Ashtiani, B., and Yavari-Ramshe, S. (2011). "Numerical simulation of wave generated by landslide incidents in dam reservoirs." Landslides, Vol. 8, pp. 417-432. https://doi.org/10.1007/s10346-011-0258-8
  4. Fritz, H.M., Hager W.H., and Minor H.-E. (2001). "Lituya bay case: Rockslide impact and wave run-up." Science of Tsunami Hazards, Vol. 19, No. 1, pp. 3-22.
  5. Fritz, H.M., Hager, W.H., and Minor, H.-E. (2003). "Landslide generated impulse waves. 1. Instantaneous flow fields." Experiments in Fluids, Vol. 35, pp. 505-519. doi: 10.1007/s00348-003-0659-0
  6. Huber, A., and Hager, W.H. (1997). "Forecasting impulse waves in reservoirs." Proceedings of 19th Congres des Grands Barrages, ICOLD, Paris, France, Vol. C.31, pp. 993-1005.
  7. Jasak, H., Weller, H.G., and Gosman, A.D. (1999). "High resolution NVD differencing scheme for arbitrarily unstructured meshes." International Journal for Numerical Methods in Fluids, Vol. 31, pp. 431-449. https://doi.org/10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
  8. Kim, S. Paik, J., and Kim, K-S. (2013). "Run-out modeling of debris flows in Mt. Umyeon using FLO-2D." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 3, pp. 965-974. https://doi.org/10.12652/Ksce.2013.33.3.965
  9. Kim, Y., Kim T., Kim, D., and Yoon, J. (2020). "Debris flow characterisitics and sabo dam function in urban steep slopes." Journal of Korea Water Resource Association, Vol. 53, No. 8, pp. 627-636. https://doi.org/10.3741/JKWRA.2020.53.8.627
  10. Kim, Y-J., Yoon, J-S., Tanaka, K., and Hur, D-S. (2015). "Prediction of a debris flow flooding caused by probable maximum precipitation." Journal of Korea Water Resource Association, Vol. 48, No. 2, pp. 115-126. https://doi.org/10.3741/JKWRA.2015.48.2.115
  11. Lee, S., An, H., Kim, M., and Lim, H. (2020). "Analysis of debris flow simulation parameters with entranment effect: A case study in the Mt. Umyeon." Journal of Korea Water Resource Association, Vol. 52, No. 9, pp. 637-646. https://doi.org/10.3741/jkwra.2019.52.9.637
  12. Mitsoulis, E. (2007). "Flows of viscoplastic materials: Models and computations." Rheology review, Edited by Binding, D.M., Hudson, N.E., and Keunings, R., The British Society of Rheology, London, UK,, pp. 136-178.
  13. OpenFOAM (2021). The open source CFD toolbox, accessed 1 March 2021, .
  14. Panizzo, A, De Girolamo P., and Petaccia, A. (2005). "Forecasting impulse waves generated by subaerial landslides." Journal of Geophysical Research, Vol. 101, No. C12, C12025. doi: 10.1029/2004JC002778
  15. Papanastasiou, T.C. (1987). "Flow of materials with yield." Journal of Rheology, Vol. 31, pp. 385-404. https://doi.org/10.1122/1.549926
  16. Pastor, M., Herreros, I., Fernandez Merodo, J.A., Mira, P., Haddad, B., Quecedo, M., Gonzalez, E., Alvarez-Cedron, C., and Drempetic, V. (2009). "Modeling of fast catastrophic landslides and impulse waves induced by them in fjords, lakes and reservoirs." Engineering Geology, Vol. 109, No. 1-2, pp. 124-134. https://doi.org/10.1016/j.enggeo.2008.10.006
  17. Slingerland, R.L., and Voight, B. (1979). "Occurrences, properties and predictive models fo landslide generated impulse waves." Rockslides and avalanches v.2, Edited by Voight, B., Elsevier, Amsterdam, pp. 317-397.
  18. Synolakis, C.E. (1987). "The run-up of solitary waves." Journal of Fluid Mechanics, Vol. 185, pp. 523-545. https://doi.org/10.1017/S002211208700329X
  19. Vacondio, R., Mignosa, P., and Pagani, S. (2013). "3D SPH numerical simulation of the wave generated by the Vajont rockslide." Advances in Water Resources, Vol. 59, pp. 146-156. https://doi.org/10.1016/j.advwatres.2013.06.009