References
- Bohm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419-2427. https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2
- Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive twomoment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842. https://doi.org/10.1256/smsqj.56613
- Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 6515-6522. https://doi.org/10.1002/2014GL061016
- Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610-2627. https://doi.org/10.1175/MWR2810.1
- Hallett, J., and S. C. Mossop, 1974: Production of secondary ice crystals during the riming process. Nature, 249, 26-28. https://doi.org/10.1038/249026a0
- Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of platelike crystals and graupel. J. Atmos. Sci., 44, 1088-1099. https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2
- Heymsfield, A. J., and R. Wright, 2014: Graupel and hail terminal velocities: Does a ''supercritical'' Reynolds number apply? J. Atmos. Sci., 71, 3392-3403. https://doi.org/10.1175/JAS-D-14-0034.1
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
- Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
- Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation (Meteorological monographs). Amer. Meteor. Soc., 84 pp.
- Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77-110. https://doi.org/10.1016/S0169-8095(96)00005-1
- Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129-146. https://doi.org/10.1016/j.atmosres.2010.09.015
- Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 1872-1884. https://doi.org/10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2
- Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 1510-1516. https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
- Kohler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Far. Soc., 32, 1152-1161. https://doi.org/10.1039/TF9363201152
- Lee, H., J.-J. Baik, and J.-Y. Han, 2014: Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations. J. Geophys. Res. Atmos., 119, 13506-13525. https://doi.org/10.1002/2014JD022363
- Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612. https://doi.org/10.1175/2009MWR2968.1
- Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteor., 22, 1065-1086. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
- Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 1637-1644. https://doi.org/10.1175/JAS3413.1
- Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677. https://doi.org/10.1175/JAS3446.1
- Ogura, Y., and T. Takahashi, 1973: The development of warm rain in a cumulus model. J. Atmos. Sci., 30, 262-277. https://doi.org/10.1175/1520-0469(1973)030<0262:TDOWRI>2.0.CO;2
- Pinsky, M., A. Khain, D. Rosenfeld, and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res., 49, 99-113. https://doi.org/10.1016/S0169-8095(98)00073-8
- Pinsky, M., A. Khain, D. Rosenfeld, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357-374. https://doi.org/10.1175/2007JAS2358.1
- Soong, S.-T., 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262-1285. https://doi.org/10.1175/1520-0469(1974)031<1262:NSOWRD>2.0.CO;2
- Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115. https://doi.org/10.1175/2008MWR2387.1
- Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243-249. https://doi.org/10.1007/BF01993560
- Wang, P. K., 2002: Ice Microdynamics. Academic Press, 273 pp.
- Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2