DOI QR코드

DOI QR Code

Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation

싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향

  • Lee, Hyunho (School of Earth and Environmental Sciences, Seoul National University) ;
  • Baik, Jong-Jin (School of Earth and Environmental Sciences, Seoul National University)
  • 이현호 (서울대학교 지구환경과학부) ;
  • 백종진 (서울대학교 지구환경과학부)
  • Received : 2016.05.24
  • Accepted : 2016.07.26
  • Published : 2016.09.30

Abstract

In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.

Keywords

References

  1. Bohm, H. P., 1989: A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419-2427. https://doi.org/10.1175/1520-0469(1989)046<2419:AGEFTT>2.0.CO;2
  2. Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive twomoment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815-1842. https://doi.org/10.1256/smsqj.56613
  3. Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 6515-6522. https://doi.org/10.1002/2014GL061016
  4. Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610-2627. https://doi.org/10.1175/MWR2810.1
  5. Hallett, J., and S. C. Mossop, 1974: Production of secondary ice crystals during the riming process. Nature, 249, 26-28. https://doi.org/10.1038/249026a0
  6. Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach to calculating terminal velocities of platelike crystals and graupel. J. Atmos. Sci., 44, 1088-1099. https://doi.org/10.1175/1520-0469(1987)044<1088:AIATCT>2.0.CO;2
  7. Heymsfield, A. J., and R. Wright, 2014: Graupel and hail terminal velocities: Does a ''supercritical'' Reynolds number apply? J. Atmos. Sci., 71, 3392-3403. https://doi.org/10.1175/JAS-D-14-0034.1
  8. Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
  9. Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
  10. Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulation (Meteorological monographs). Amer. Meteor. Soc., 84 pp.
  11. Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the Eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77-110. https://doi.org/10.1016/S0169-8095(96)00005-1
  12. Khain, A. P., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129-146. https://doi.org/10.1016/j.atmosres.2010.09.015
  13. Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 1872-1884. https://doi.org/10.1175/1520-0469(2002)059<1872:TVODAC>2.0.CO;2
  14. Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 1510-1516. https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2
  15. Kohler, H., 1936: The nucleus in and the growth of hygroscopic droplets. Trans. Far. Soc., 32, 1152-1161. https://doi.org/10.1039/TF9363201152
  16. Lee, H., J.-J. Baik, and J.-Y. Han, 2014: Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations. J. Geophys. Res. Atmos., 119, 13506-13525. https://doi.org/10.1002/2014JD022363
  17. Lim, K.-S. S., and S.-Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587-1612. https://doi.org/10.1175/2009MWR2968.1
  18. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteor., 22, 1065-1086. https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
  19. Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 1637-1644. https://doi.org/10.1175/JAS3413.1
  20. Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677. https://doi.org/10.1175/JAS3446.1
  21. Ogura, Y., and T. Takahashi, 1973: The development of warm rain in a cumulus model. J. Atmos. Sci., 30, 262-277. https://doi.org/10.1175/1520-0469(1973)030<0262:TDOWRI>2.0.CO;2
  22. Pinsky, M., A. Khain, D. Rosenfeld, and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res., 49, 99-113. https://doi.org/10.1016/S0169-8095(98)00073-8
  23. Pinsky, M., A. Khain, D. Rosenfeld, and H. Krugliak, 2008: Collisions of cloud droplets in a turbulent flow. Part V: Application of detailed tables of turbulent collision rate enhancement to simulation of droplet spectra evolution. J. Atmos. Sci., 65, 357-374. https://doi.org/10.1175/2007JAS2358.1
  24. Soong, S.-T., 1974: Numerical simulation of warm rain development in an axisymmetric cloud model. J. Atmos. Sci., 31, 1262-1285. https://doi.org/10.1175/1520-0469(1974)031<1262:NSOWRD>2.0.CO;2
  25. Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095-5115. https://doi.org/10.1175/2008MWR2387.1
  26. Twomey, S., 1959: The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl. Geophys., 43, 243-249. https://doi.org/10.1007/BF01993560
  27. Wang, P. K., 2002: Ice Microdynamics. Academic Press, 273 pp.
  28. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520. https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2