• 제목/요약/키워드: Two Degree-of Freedom Controller

검색결과 177건 처리시간 0.038초

퍼지 게인 스케쥴링을 이용한 CSTR의 온도 제어 (Temperature Control of a CSTR using Fuzzy Gain Scheduling)

  • 김종화;고강영;진강규
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.839-845
    • /
    • 2013
  • A CSTR (Continuous Stirred Tank Reactor) is a highly nonlinear process with varying parameters during operation. Therefore, tuning of the controller and determining the transition policy of controller parameters are required to guarantee the best performance of the CSTR for overall operating regions. In this paper, a methodology employing the 2DOF (Two-Degree-of-Freedom) PID controller, the anti-windup technique and a fuzzy gain scheduler is presented for the temperature control of the CSTR. First, both a local model and an EA (Evolutionary Algorithm) are used to tune the optimal controller parameters at each operating region by minimizing the IAE (Integral of Absolute Error). Then, a set of controller parameters are expressed as functions of the gain scheduling variable. Those functions are implemented using a set of "if-then" fuzzy rules, which is of Sugeno's form. Simulation works for reference tracking, disturbance rejecting and noise rejecting performances show the feasibility of using the proposed method.

AFS 시스템의 새로운 수학적 모델 및 제어기 개발 (Development of New Numerical Model and Controller of AFS System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.59-67
    • /
    • 2014
  • A numerical model and a controller of Active Front wheel Steer (AFS) system are designed in this study. The AFS model consists of four sub models, and the AFS controller uses sliding mode control and PID control methods. To test this model and controller an Integrated Dynamics Control with Steering (IDCS) system is also designed. The IDCS system integrates an AFS system and an ARS (Active Rear wheel Steering) system. The AFS controller and IDCS controller are compared under several driving and road conditions. An 8 degree of freedom vehicle model is also employed to test the controllers. The results show that the model of AFS system shows good kinematic steering assistance function. Steering ratio varies depends on vehicle velocity between 12 and 24. Kinematic stabilization function also shows good performance because yaw rate of AFS vehicle tracks the reference yaw rate. IDCS shows improved responses compared to AFS because body side slip angle is also reduced. This result also proves that AFS system shows satisfactory result when it is integrated with another chassis system. On a split-m road, two controllers forced the vehicle to proceed straight ahead.

Neural Network Active Control of Structures with Earthquake Excitation

  • Cho Hyun Cheol;Fadali M. Sami;Saiidi M. Saiid;Lee Kwon Soon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.202-210
    • /
    • 2005
  • This paper presents a new neural network control for nonlinear bridge systems with earthquake excitation. We design multi-layer neural network controllers with a single hidden layer. The selection of an optimal number of neurons in the hidden layer is an important design step for control performance. To select an optimal number of hidden neurons, we progressively add one hidden neuron and observe the change in a performance measure given by the weighted sum of the system error and the control force. The number of hidden neurons which minimizes the performance measure is selected for implementation. A neural network was trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-freedom (TDOF) bridge system. We assessed the robustness of the control system using randomly generated earthquake excitations which were not used in training the neural network. Our results show that the neural network controller drastically mitigates the effect of the disturbance.

Study on Satellite Vibration Control Using Adaptive Algorithm

  • Oh, Choong-Seok;Oh, Se-Boung;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2120-2125
    • /
    • 2005
  • The principal idea of vibration isolation is to filter out the response of the system over the corner frequency. The isolation objectives are to transmit the attitude control torque within the bandwidth of the attitude control system and to filter all the high frequency components coming from vibration equipment above the bandwidth. However, when a reaction wheels or control momentum gyros control spacecraft attitude, vibration inevitably occurs and degrades the performance of sensitive devices. Therefore, vibration should be controlled or isolated for missions such as Earth observing, broadcasting and telecommunication between antenna and ground stations. For space applications, technicians designing controller have to consider a periodic vibration and disturbance to ensure system performance and robustness completing various missions. In general, past research isolating vibration commonly used 6 degree order freedom isolators such as Stewart and Mallock platforms. In this study, the vibration isolation device has 3 degree order freedom, one translational and two rotational motions. The origin of the coordinate is located at the center-of-gravity of the upper plane. In this paper, adaptive notch filter finds the disturbance frequency and the reference signal in filtered-x least mean square is generated by the notch frequency. The design parameters of the notch filter are updated continuously using recursive least square algorithm. Therefore, the adaptive filtered-x least mean square algorithm is applied to the vibration suppressing experiment without reference sensor. This paper shows the experimental results of an active vibration control using an adaptive filtered-x least mean squares algorithm.

  • PDF

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

인공안구 구현을 위한 병렬 구조의 3자유도 회전 로봇 개발 (Development of 3 DOF Parallel Spherical Robot for Artificial Eyeball)

  • 박성령;양승한
    • 한국정밀공학회지
    • /
    • 제31권6호
    • /
    • pp.535-541
    • /
    • 2014
  • In this research, three degree-of-freedom parallel spherical robot is developed for an artificial eyeball. The proposed system is comprised of a moving and a base plate, three prismatic actuators, and a ball joint for an angular movement of the moving plate. The vector analysis is employed to investigate the relationship between positions of the actuators and a pose of the moving plate. The required ranges for every actuators are calculated using the derived inverse kinematics in regard to the combination of two different levels for the size of the system component. Then the size of every components is determined from the analyzed trend. PI controller is employed for the position control of the moving plate. Finally the proposed system is verified using an arbitrary path of the angular movement.

외란관측기를 이용한 서로계의 통합설계 (Integrated Design of Servomechanisms Using a Disturbance Observer)

  • 김민석;정성종
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

3D Modeling and Balancing Control of Two-link Underactuated Robots using Matlab/Simulink

  • Yoo, Dong Sang
    • Journal of information and communication convergence engineering
    • /
    • 제17권4호
    • /
    • pp.255-260
    • /
    • 2019
  • A pendubot is a representative example of an underactuated system that has fewer actuators than the degree of freedom of the system. In this study, the characteristics of the pendubot are first reviewed; each part is then designed using Solidworks by dividing the pendubot into three parts: the base frame, first link frame, and second link frame. These three parts are then imported into the Simulink environment via a STEP file format, which is the standard protocol used in data exchange between CAD applications. A 3D model of the pendubot is then constructed using Simscape, and the usefulness of the 3D model is validated by a comparison with a dynamic equation derived using the Lagrangian formulation. A linearized model around an upright equilibrium position is finally obtained, and a sliding mode controller is designed based on the linear quadratic regulator. Simulation results showed that the designed controller effectively maintained upright balance of the pendubot in the presence of disturbance.

A Fuzzy Control of a 3-dimensional Inverted Pendulum Using a 3-axis Cartesian Robot

  • Shin, Ho-sun;chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.176.1-176
    • /
    • 2001
  • Conventional researches almost have been focused on the one dimensional inverted pendulum. Recently, Sprenger et al[2] have researched a two dimensional inverted pendulum Observing human's action to control an inverted pendulum, one can recognize that human uses a three dimensional metier including the up and down motion. In this paper, we propose a fuzzy logic controller(FLC) of a new three dimensional inverted pendulum system. We derive a dynamic equation of the mechanism including a 3-axis cartesian robot and a inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of a inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot ...

  • PDF

다중프로세서 방식을 사용한 직류-교류변환기의 펄스폭변조제어에 관한 연구 (A Study on the PWM Controller of DC-AC Inverter using the Multiprocessor System)

  • 이윤종;이성백
    • 한국통신학회논문지
    • /
    • 제12권5호
    • /
    • pp.505-518
    • /
    • 1987
  • 본 논문은 2레벨 및 3레벨 형태의 펄스폭변조 기법을 해석한 후 이런 두 형태의 펄스폭변조인버터에 대한 제어기로서 사용될 수 있는 다중 프로세서를 설계하였다. 설계된 다중 프로세서 방식은 Supervisory 프로세서가 공용메모리를 통해서 Local 프로세서와 상호 연결되어 있는 계층적인 구성을 도입함으로써 정교한 디지탈제어특성을 보였다. 이런 다중 프로세서 구성을 실현함으로써 시스템의 소프트웨어를 변경시 큰 자유도를 얻을 수 있었고 단일 프로세서구성때보다 소프트웨어를 더욱 간단하게 할 수 있었다.

  • PDF