• 제목/요약/키워드: Twitter Services

검색결과 181건 처리시간 0.021초

국내 공공도서관의 트위터 이용에 관한 내용분석 (A Content Analysis on the Domestic Public Libraries' Use of Twitter)

  • 심지영
    • 정보관리학회지
    • /
    • 제34권1호
    • /
    • pp.241-262
    • /
    • 2017
  • 본 연구에서는 국내 공공도서관의 트위터 이용을 파악하고 분석하고자 한다. 도서관 정보서비스 환경에서 트위터 이용의 구체적인 패턴을 파악하기 위해, 트위터 이용이 활발한 14개 공공도서관 계정으로부터 3,038개의 트윗 데이터를 수집하여 내용분석을 수행하였다. 귀납적 방식으로 코딩 체계를 수립하였으며, 오픈 코딩 방식을 통해 공공도서관 트윗 데이터를 분석하였다. 또한 도서관별로 활성화된 유형을 파악하기 위해 대응일치분석을 수행하였다. 그 결과, 공공도서관 트위터 이용에 관한 상위 범주 3개와 9개의 하위 범주, 37개의 세부 항목을 파악하였다. 본 연구의 내용분석 결과는 향후 트위터 이용을 계획하는 도서관에게 참고자료로 제시될 수 있으리라 본다.

트위터를 통한 기업과 고객과의 소통: 지속적인 팔로윙과 구전 의도에 영향을 미치는 요인에 대한 연구 (Following Firms on Twitter: Determinants of Continuance and Word-of-Mouth Intentions)

  • 김홍기;손재열;서길수
    • Asia pacific journal of information systems
    • /
    • 제22권3호
    • /
    • pp.1-27
    • /
    • 2012
  • Many companies have recently become interested in using social networking sites such as Twitter and Facebook as a new channel to communicate with their customers. For example, companies often offer "special deals" (e.g., coupons, discounts, free samples, etc.) to their customers who participate in promotions or events on social networking sites. Companies often make important announcements on their products or services on social networking sites. By doing so, customers are encouraged to continue to have relationships with companies on social networking sites and to recommend the companies' presence on social networking sites to other potential customers. Moreover, customers who keep close relationships with companies on social networking sites often provide the companies with valuable suggestions and feedback. For instance, Starbucks has more than 2 million followers on Twitter, and often receive suggestions and feedback for their product offerings and services from the followers on Twitter. Although companies realize potential benefits of using social networking sites as a channel to communicate with their customers, it appears that many companies have difficulty forging long-lasting relationships with customers on social networking sites. It is often reported that many customers who had followed companies on Twitter later stopped following them for various reasons. Therefore, it is an important issue to understand what motivates customers to continue to keep relationships with companies on social networking sites. Nonetheless, due attention has yet paid to this issue until recently. This study intends to contribute to our understanding on customers' intention to continue to follow companies on Twitter and to spread positive word-of-mouth about companies on Twitter. Specifically, we identify seven potential factors that customers perceive as important in evaluating their experience with companies on Twitter. The seven factors include similarity, receptivity, interactivity, ubiquitous connectivity, enjoyment, usefulness and transparency. We posit that the seven perception factors can affect the two types of satisfaction, emotional and cognitive, which can in turn influence on customers' intention to follow companies on Twitter and to spread positive word-of-mouth about companies on Twitter. Research hypotheses formulated in this study were tested with data collected from a questionnaire survey administered to customers who had been following companies on Twitter. The data was analyzed with the partial least square (PLS) approach to structural equation modeling. The results of data analysis based on 177 usable responses were generally supportive of our predictions for the effects of the seven factors identified and the two types of satisfaction. In particular, out results suggest that emotional satisfaction was strongly influenced by perceived similarity, perceived receptivity, perceived enjoyment, and perceived transparency. Cognitive satisfaction was significantly influenced by perceived similarity, perceived interactivity, perceived enjoyment, and perceived transparency. While cognitive satisfaction was found to have significant and positive effects on both continued following and word-of-mouth intentions, emotional satisfaction had a significant and positive effect only on word-of-mouth intention.

  • PDF

An Extended Work Architecture for Online Threat Prediction in Tweeter Dataset

  • Sheoran, Savita Kumari;Yadav, Partibha
    • International Journal of Computer Science & Network Security
    • /
    • 제21권1호
    • /
    • pp.97-106
    • /
    • 2021
  • Social networking platforms have become a smart way for people to interact and meet on internet. It provides a way to keep in touch with friends, families, colleagues, business partners, and many more. Among the various social networking sites, Twitter is one of the fastest-growing sites where users can read the news, share ideas, discuss issues etc. Due to its vast popularity, the accounts of legitimate users are vulnerable to the large number of threats. Spam and Malware are some of the most affecting threats found on Twitter. Therefore, in order to enjoy seamless services it is required to secure Twitter against malicious users by fixing them in advance. Various researches have used many Machine Learning (ML) based approaches to detect spammers on Twitter. This research aims to devise a secure system based on Hybrid Similarity Cosine and Soft Cosine measured in combination with Genetic Algorithm (GA) and Artificial Neural Network (ANN) to secure Twitter network against spammers. The similarity among tweets is determined using Cosine with Soft Cosine which has been applied on the Twitter dataset. GA has been utilized to enhance training with minimum training error by selecting the best suitable features according to the designed fitness function. The tweets have been classified as spammer and non-spammer based on ANN structure along with the voting rule. The True Positive Rate (TPR), False Positive Rate (FPR) and Classification Accuracy are considered as the evaluation parameter to evaluate the performance of system designed in this research. The simulation results reveals that our proposed model outperform the existing state-of-arts.

소셜 네트워크 서비스의 연구경향 분석: 국내 Twitter 관련 연구 중심 (Analysis of Research Trends on Social Network Service: Focusing on the Korea's Studies of Twitter)

  • 하병국
    • 서비스연구
    • /
    • 제5권1호
    • /
    • pp.79-89
    • /
    • 2015
  • 최근, 소셜 네트워크 서비스(Social Network Service)의 도입과 더불어 이를 다양한 목적을 충족시키는 연구가 진행되고 있다. 많은 연구가 진행됨에 따라 연구 경향을 파악하는 것이 필요하다. 하지만 연구의 양이 방대하여 많은 양의 관련 연구 문헌을 조사하는 것은 상당히 어려운 작업이다. 따라서 본 연구에서는 소셜 네트워크 서비스 중 트위터를 중심으로 관련 연구들을 체계적으로 분석하여 연구의 경향성을 밝힌다. 특히 체계적인 문헌 조사와 분석을 위해 SLR(Systematic Literature Review) 기법을 이용한다. 그리고 국내 연구를 중심으로 243편을 조사 하였다. 다양한 분야의 학문을 살펴보기 위하여 학술 분류 KDC와 기본 연구자들의 관점 그리고 트위터 데이터의 직접 사용 등을 분석차원으로 구성하여 분석하였다. 연구 결과 다양한 학문에서 트위터를 분석 하고 있으며 그 방법 또한 단순 설문을 넘어 트위터 데이터를 직접 사용하는 연구가 많았다.

B2C 마이크로블로깅을 통한 고객참여 메커니즘의 이해 (Understanding Customer Participation Behavior via B2C Microblogging)

  • 박종필;손재열
    • Asia pacific journal of information systems
    • /
    • 제22권4호
    • /
    • pp.51-73
    • /
    • 2012
  • Social network services based on openness, connectedness, and mass participation are reshaping many aspects of how companies conduct business and create value for their customers. For instance, Facebook and Twitter are expected to play a pivotal role as a new communication channel through which companies-forge close relationships with their customers for co-creation of value for mutual benefits. Given the potential of social network services, it is not surprising that many companies have strategically invested in social network services to reach out to customers. Despite the growing interest in social network services as a platform to connect companies and their customers, few guidelines exist about how managers can effectively utilize social network services in forging relationships with their customers. As such, scholars should pay greater attention to how firms can successfully develop relationships with their customers on social network services. In particular, this study employs the S-O-R (stimulus-organism-response) framework as a theoretical lens to develop a research model that explains customers' participation in the value co-creation platform that companies opened on Twitter. According to the S-O-R framework, certain types of individuals' behaviors can be best understood based on a causal link from environmental stimulus to organism, and response. We apply the S-O-R framework to understand how ubiquitous connectivity (stimuli) can influence customers' experience (organism) with companies on Twitter, which in turn influence their participation behavior (response). Two steps have been undertaken to empirically test the research model. First, we conducted a content analysis of tweets written by customers who follow companies on Twitter. As a result, we found event/promotion participation, company support, and giving feedback as three specific types of customer participation behavior. Second, we conducted a web-based survey to test research hypotheses in the research model. Participations in the survey were solicited to customers who followed companies on Twitter. As a result, a total of 115 respondents have completed the survey. Data were analyzed using the partial least square (PLS) technique. The results of data analysis suggest that ubiquitous connectivity (stimuli) had strong positive effects on perceive usefulness, perceived enjoyment, and perceived intimacy (organism). Perceived intimacy showed positive effects on customer participation behavior (response), such as event participation, company support, and giving feedback. Perceived enjoyment was found to have strong positive effects on company support and giving feedback. On the other hand, perceived usefulness did not have significant impacts on the three types of customer participation behavior.

  • PDF

자기표현욕구와 개인정보노출우려가 자기노출의도에 미치는 영향 : 트위터를 중심으로 (Effects of Self-Presentation and Privacy Concern on an Individual's Self-Disclosure : An Empirical Study on Twitter)

  • 이새봄;판류;이상철;서영호
    • 경영과학
    • /
    • 제29권2호
    • /
    • pp.1-20
    • /
    • 2012
  • While feeling anxious about the risk of exposure of personal information and privacy, users of microblogs and social network services are continuously using them. This study aims to develop a model to investigate this phenomenon. Specifically, this study explores the relationship between personal characteristics (represented by privacy concern and self-presentation) and an individual's self-disclosure. An individual's personal belief (represented by perceived risk and perceived trust) is also tested as an mediator between the relationship. Through a questionnaire survey to 183 twitter users in Korea, the results indicate that self-presentation has a direct influence on self-disclosure as well as an indirect influence through perceived trust. In contrast, privacy concern has not a direct but an indirect negative influence on self-disclosure through perceived risk. In conclusion, self-presentation has a stronger influence on self-disclosure then privacy concern to Twitter users. An individual who has a higher propensity for self-presentation will form a stronger perceived trust on Twitter, which in turn, affects the individual's self-disclosure. On the other hand, an individual who is more concerned with personal privacy will feel more serious about perceived risk, which in turn, negatively influences one's perception of the trust in Twitter as well as his desire for self-disclosure.

재전송 정보를 활용한 트위터 랭킹의 정확도 평가 (An Evaluation of Twitter Ranking Using the Retweet Information)

  • 장재영
    • 한국전자거래학회지
    • /
    • 제17권2호
    • /
    • pp.73-85
    • /
    • 2012
  • 최근 들어 트위터나 페이스북과 같은 SNS가 대중화되면서 이에 관련한 연구도 활발히 진행되고 있다. 하지만 SNS가 비교적 최근에 시작된 만큼 관련 연구도 아직 초보적인 수준이다. 특히 포털 사이트와 같은 검색 엔진에서는 트위터에 대한 검색 결과를 최근에 등록된 순으로 보여주는 수준에 머물러 있다. 트위터에서의 검색은 기존의 TF-IDF로 대표되는 웹 검색 방식과는 달라야한다. 본 논문에서는 트위터 환경에서 사용자가 원하는 게시글을 효율적으로 검색하는 방법을 제안한다. 제안된 방법에서는 사용자들의 재전송 빈도를 검색결과의 주요한 평가요소로 활용한다. 재전송 정보는 사용자가 직접 게시글의 가치를 판단하는 중요한 평가 척도가 될 수 있다. 또한 실험을 통하여 제안된 방법이 트위터 검색에 효율적으로 적용될 수 있음을 보여준다.

기계학습을 이용한 SNS 오피니언 문서의 자동추출기법 (Automatic Retrieval of SNS Opinion Document Using Machine Learning Technique)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.27-35
    • /
    • 2013
  • 최근 들어 SNS가 대중화됨에 따라, 이들로 부터 오피니언을 분석하여 특정 이슈에 대한 여론을 파악하려는 다양한 연구가 진행되고 있다. SNS 환경에서 오피니언 분석을 위해서는 우선 게시글 중에서 오피니언 문서와 그렇지 않은 문서(객관적 문서)를 분리해야한다. 본 논문에서는 트위터 문서로 부터 오피니언 문서만을 추출하는 새로운 방법을 제안한다. 트위터 환경에서 오피니언 문서에 대한 분류나 검색의 어려운 점은 충분한 학습 자료가 존재하지 않다는데 있다 이를 위해 제안된 방법에서는 감성 분류를 위해 트위터와 유사한 외부의 정보를 이용하여 기계학습기반 분류 모델을 생성하고, 이를 응용하여 트위터에서의 오피니언 문서 추출에 적용하였다. 또한 실험을 통하여 제안된 방법의 적용 가능성을 평가하였다.

온라인 소셜 네트워크의 특성과 사용자의 이용 목적에 대한 탐색적 연구 : 싸이월드, 페이스북, 트위터간의 비교를 중심으로 (An Exploratory Study on the Characteristics of Online Social Network and the Purpose of Customers' Use : A Comparison of Cyworld, Facebook, and Twitter)

  • 서보밀
    • Journal of Information Technology Applications and Management
    • /
    • 제20권2호
    • /
    • pp.109-125
    • /
    • 2013
  • As the number of SNS users is increasing, it has been very important how companies use SNS strategically. As a result, studies have been performed for the utilization of SNS. Most of the studies, however, focused on the overall characteristics of SNS and did not consider the characteristics of individual SNS. This study classified the main purpose of SNS use as relation-oriented purpose and information-oriented purpose, and identified the types of SNS from two viewpoints : service type and openness. Based on the classification, this study identified the characteristics of Cyworld, Facebook, and Twitter respectively, and analyzed the difference of the purpose of SNS users according to the characteristics of each service. The results showed that more users had the information-oriented purpose in the order of Twitter, Facebook, and Cyworld. There was no difference in the relation-oriented purpose among the three services. The analyses of the motive to join a group or a party made similar results. The results of additional analyses showed that the ratio of users with many acquaintances was high in the order of Facebook, Twitter, and Cyworld. In addition, more users checked their timeline or news feed more frequently in the order of Facebook, Twitter, and Cyworld.

트위터 사용자와 팔로워들 간의 실시간 메시지 교류 시스템 개발 (A Real-Time Messaging System for Twitter Users and Their Followers)

  • 박종은;권오진;이홍창;이명준
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권9호
    • /
    • pp.87-95
    • /
    • 2011
  • 최근 급속히 보급된 스마트폰과 소셜 네트워킹 서비스의 발전은 가상 세계와 실세계를 보다 밀접하게 연결하여 사람들 간의 다양한 상호작용을 가능하게 하고 있다. 일반적인 소셜 네트워킹 서비스는 사용자들 간의 네트워크를 쉽게 구성하는 방법에 치중하고 있으며 네트워크에 참여한 다른 사용자들과 단순한 정보 교환 기능을 지원한다. 세계적으로 널리 사용되는 서비스인 트위터는 정보 교환 기능으로 트윗이라는 단문 메시지만을 사용하고 있으며 2억명이 넘는 사용자를 확보하고 있다. 논문에서는 대표적인 SNS인 트위터의 소셜 네트워크를 기반으로 실시간 그룹 채팅을 지원하는 기법을 제안하고 이를 활용하여 스마트폰 그룹 메시징 시스템을 개발하였다. 트위터의 소셜 네트워크를 반영하여 트위터 사용자와 그 사용자의 팔로워들이 참여하는 그룹을 자동적으로 형성하고 그룹 구성원이 모두 참여할 수 있는 실시간 그룹 메시징을 지원하는 기법을 제안하였다. 그리고 이를 바탕으로 개발된 스마트폰 그룹 메시징 시스템은 XMPP 프로토콜 기반의 메시징 서버와 트위터의 소셜 네트워크를 기반으로 실시간 메시징을 수행하는 스마트폰 클라이언트로 구성된다. 사용자는 트위터 메시지를 이용하여 손쉽게 메시징 시스템을 사용할 수 있으며, XMPP 서버에 자동적으로 형성되는 그룹을 통하여 자신의 팔로워들과 메시지를 실시간으로 교환할 수 있다.